Skip to main content
Log in

Efficient way for detection of alcohols using hollow core photonic crystal fiber sensor

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In this study, a simple hollow core hexagonal structured photonic crystal fiber is offered and analyzed to discern commonly used different type of alcohols in our daily life. The proposed sensor guiding properties are numerically investigated using a full vectorial finite element software-based scheme. To ensure higher accuracy, the properties of alcohols (refractive index and dielectric constant) at different wavelength are used to calculate the behaviour of the sensor. The simulation results ensure that extremely high relative sensitivity around 89% can be achieved from the sensor at optimum structural condition. In addition, other important propagation parameters such as confinement loss (CL), single-mode propagation spot size, numerical aperture, etc., are discussed in detail for various geometric conditions. The structure of that sensor is straightforward, and available commercial fabrication technology can be used to fabricate it without any complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Levi, M.S., Borne, R.F.: A review of chemical agents in the pharmacotherapy of addiction. Curr. Med. Chem. 9(20), 1807–1818 (2002)

    Article  Google Scholar 

  2. Duthie, G.G., Pedersen, M.W., Gardner, P.T., Morrice, P.C., Jenkinson, A.M., McPhail, D.B., Steele, G.M.: The effect of whisky and wine consumption on total phenol content and antioxidant capacity of plasma from healthy volunteers. Eur. J. Clin. Nutr. 52(10), 733–736 (1998)

    Article  Google Scholar 

  3. Daalena, F., Senatore, A.A., Basile, M., Knani, S., Basilo, A., Iulianelli, A.: Advances in methanol production and utilization, with particular emphasis toward hydrogen generation via membrane reactor technology. Membranes 8(4), 98 (2018)

    Article  Google Scholar 

  4. Brown, M.J., Parkyns, N.D.: Progress in the partial oxidation of methane to methanol and formaldehyde. Catal. Today 8(3), 305–335 (1991)

    Article  Google Scholar 

  5. Wang, M., Choong, Y., Su, N., Lee, M.: A rapid method for determination of ethanol in alcoholic beverages using capillary gas chromatography. J Food Drug Anal 11(2), 133–140 (2003)

    Google Scholar 

  6. Elfasakhany, A.: Investigations on the effects of ethanol–methanol–gasoline blends in a spark-ignition engine: Performance and emissions analysis. Eng. Sci. Technol. Int. J. 18(4), 713–719 (2015)

    Google Scholar 

  7. Atsumi, S., Hanai, T., Liao, J.C.: Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86–89 (2008)

    Article  ADS  Google Scholar 

  8. Tasic, T., Pogorevc, P., Brajlih, T.: Gasoline and Exhaust Emission Comparison. Adv. Prod. Eng. Manag. 6(2), 87–94 (2011)

    Google Scholar 

  9. Counts, J.B.: Identification of alcohols by color reactions. Analytical Chemistry 37(7), 926–1965 (1965)

    Article  Google Scholar 

  10. Sielemann, S., Baumbach, J.I., Schmidt, H., Pilzecker, P.: Detection of alcohols using UV-ion mobility spectrometers. Analytical Chemistry Acta 431(2), 293–301 (2001)

    Article  Google Scholar 

  11. Sankaran, S., Panigrahi, S., Mallik, S.: Odorant binding protein based biomimetic sensors for detection of alcohols associated with Salmonella contamination in packaged beef. Biosens. Bioelectron. 26(7), 3103–3109 (2011)

    Article  Google Scholar 

  12. Discenza, D.J., Levine, M.: Sensitive and selective detection of alcohols via fluorescence modulation. Supramol. Chem. 28(11–12), 881–891 (2016)

    Article  Google Scholar 

  13. Dutta, K., Bhowmik, B., Bhattacharyya, P.: Resonant frequency tuning technique for selective detection of alcohols by TiO2 nanorod-based capacitive device. IEEE Trans. Nanotech. 16(5), 820–825 (2017)

    Article  ADS  Google Scholar 

  14. Guo, Y., Xue, S., Dirtu, M.M., Garcia, Y.: A versatile iron (ii)-based colorimetric sensor for the vapor-phase detection of alcohols and toxic gases. J. Mater. Chem. 6(15), 3895–3900 (2018)

    Google Scholar 

  15. Reza, M.S., Habib, M.A.: Extremely sensitive chemical sensor for terahertz regime based on a hollow core photonic crystal fibre. Ukr. J. Phys. Opt. 21(1), 8–14 (2020)

    Article  Google Scholar 

  16. M. A. Habib, M. S. Anower, L. F. Abdulrazak and M S. Reza, "Hollow core photonic crystal fiber for chemical identification in terahertz regime," Opt. Fib. Technol., vol. 52, pp. 101933, 2019.

  17. Rifat, A.A., Ahmed, R., Yetisen, A.K., Butt, H., Sabouri, A., Mahduraji, G.A., Yun, S.H., Adikan, F.R.M.: Photonic crystal fiber based plasmonic sensors. Sens. Actuators B 243, 311–325 (2017)

    Article  Google Scholar 

  18. Paul, A.K.: Design and analysis of photonic crystal fiber plasmonic refractive Index sensor for condition monitoring of transformer oil. OSA Continuum 3(8), 2253–2263 (2020)

    Article  Google Scholar 

  19. Abbasi, M., Soroosh, M., Namjoo, E.: Polarization insensitive temperature sensor based on liquid filled photonic crystal fiber. Optik 168, 342–347 (2018)

    Article  ADS  Google Scholar 

  20. Liu, Z., Tam, H.: Photonic Crystal Fiber Pressure Sensors. In: Hameed, M., Obayya, S. (eds.) Computational Photonic Sensors. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-76556-3_11

    Chapter  Google Scholar 

  21. Habib, M.A., Vera, E.R., Aristizabal, J.C.V., Anower, M.S.: Numerical modeling of a rectangular hollow core waveguide for the detection of fuel adulteration in terahertz region. Fibers 8(10), 1–17 (2020)

    Article  Google Scholar 

  22. Sikarwar, S., Yadav, B.C.: Opto-electronic humidity sensor: a review. Sens. Actuators A 233, 54–70 (2015)

    Article  Google Scholar 

  23. Habib, M.A.: A refractive index based micro-structured sensor for blood components detection in terahertz regime. Sens Lett 18(1), 74–82 (2020)

    Article  Google Scholar 

  24. Arif, M.F.H., Ahmed, K., Asaduzzaman, S., Azad, M.A.K.: Design and optimization of photonic crystal fiber for liquid sensing applications. Photonic Sensors. 6(3), 279–288 (2016)

    Article  ADS  Google Scholar 

  25. Islam, M.S., Paul, B.K., Ahmed, K., Asaduzzaman, S., Islam, M.I., Chowdhury, S., Sen, S., Bahar, A.N.: Liquid-infiltrated photonic crystal fiber for sensing purpose: Design and analysis. Alex. Eng. J. 57(3), 1–8 (2018)

    Article  Google Scholar 

  26. Asaduzzaman, S., Ahmed, K., Bhuiyan, T., Farah, T.: Hybrid photonic crystal fiber in chemical sensing. Springer Plus 5(748), 2016 (2016)

    Google Scholar 

  27. Paul, B.K., Ahmed, K., Asaduzzaman, S., Islam, M.S.: Folded cladding porous shaped photonic crystal fiber with high sensitivity in optical sensing applications: Design and analysis. Sens. Biosens. Res. 12, 36–42 (2017)

    Google Scholar 

  28. Rana, S., Kandadi, N., Subbaraman, H.: A highly sensitive, polarization maintaining photonic crystal fiber sensor operating in the THz Regime. Photonics 5(4), 40 (2018)

    Article  Google Scholar 

  29. Islam, M.S., Sultana, J., Ahmed, K., Islam, M.R., Dinovitser, A., Ng, B.W.H., Abbott, D.: A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sens. J. 18(2), 578–582 (2018)

    Article  ADS  Google Scholar 

  30. Islam, M.S., Sultana, J., Aoni, R.A., Dinovitser, A., Ng, B.W.H., Abbott, D.: Terahertz sensing in a hollow core photonic crystal fiber. IEEE Sens. J. 18(10), 4073–4080 (2018)

    Article  ADS  Google Scholar 

  31. Islam, M.S., Sultana, J., Dinovitser, A., Ahmed, K., Ng, B.W.H., Abbott, D.: Sensing of toxic chemicals using polarized photonic crystal fiber in the terahertz region. Opt. Commun. 426, 341–347 (2018)

    Article  ADS  Google Scholar 

  32. Habib, M.A., Reza, M.S., Abdulrazak, L.F., Anower, M.S.: Extremely high birefringent and low loss microstructure optical waveguide: Design and analysis. Opt. Commun. 446, 93–99 (2019)

    Article  ADS  Google Scholar 

  33. Moutzouris, K., Papamichael, M., Betsis, S.C., Stavrakas, I., Hloupis, G., Triantis, D.: Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared. Appl. Phys. B 116(3), 617–622 (2014)

    Article  ADS  Google Scholar 

  34. Kedenburg, S., Vieweg, M., Gissibl, T., Giessen, H.: Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near infrared spectral region. Opt. Mat. Express 2(11), 1588–1611 (2012)

    Article  ADS  Google Scholar 

  35. Mohsen-Nia, M., Amiri, H., Jazi, B.: Dielectric constants of water, methanol, ethanol, butanol and acetone: measurement and computational study. J. Solution Chem. 39, 701–708 (2010)

    Article  Google Scholar 

  36. Luo, Y., Fan, R., Zhang, Y., Wu, Q., Ren, Z., Peng, B.: Novel optical fiber refractive sensor fabricated with an alcohol filled photonic crystal fiber base on a Mach-Zehnder interferometer. Opt. Fiber Technol. 48, 278–282 (2019)

    Article  ADS  Google Scholar 

  37. Hu, D.J.J., et al.: Fabrication and Characterization of a Highly Temperature Sensitive Device Based on Nematic Liquid Crystal-Filled Photonic Crystal Fiber. IEEE Photonics J. 4(5), 1248–1255 (2012). https://doi.org/10.1109/JPHOT.2012.2204400

    Article  ADS  Google Scholar 

  38. Falkenstein, P., Merritt, C.D., Justus, B.L.: Fused performs for the fabrication of photonic crystal fibers. Opt. Lett. 29(16), 1858–1860 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Deanship of Scientific Research, Taif University Researchers Supporting Project number (TURSP-2020/08), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Nabih Zaki Rashed.

Ethics declarations

Conflict of interest

All the authors have read the manuscript and approved this for submission, as well as no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habib, M.A., Anower, M.S., AlGhamdi, A. et al. Efficient way for detection of alcohols using hollow core photonic crystal fiber sensor. Opt Rev 28, 383–392 (2021). https://doi.org/10.1007/s10043-021-00672-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-021-00672-6

Keywords

Navigation