Skip to main content
Log in

Optical Fluoride Nanoceramics

  • Published:
Inorganic Materials Aims and scope

Abstract—

This paper examines methods for the fabrication of optical fluoride nanoceramics and the compaction behavior of precursor powders. We discuss the basic drawbacks to the ceramics under consideration from the viewpoint of the physicochemical properties of fluorides. Lasing in ceramics has been demonstrated in the visible (praseodymium) and IR (neodymium, erbium, thulium, and ytterbium) spectral regions. The advantages of optical ceramics include the possibility of preparing large-aperture samples with improved mechanical characteristics and the presence of their own set of defects, including extensive polysynthetic twinning, which leads to the formation of new optical centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Hatch, S.E., Parsons, W.F., and Weagley, R.J., Hot-pressed polycrystalline CaF2:Dy2+ laser, Appl. Phys. Lett., 1964, vol. 5, no. 8, pp. 153–154.https://doi.org/10.1063/1.1754094

    Article  CAS  Google Scholar 

  2. Zolotov, E.M., Prokhorov, A.M., and Shipulo, G.P., Luminescence and generation in CaF2:Dy2+ crystals excited with a ruby laser, Zh. Eksp. Teor. Fiz., 1966, vol. 22, no. 3, pp. 498–500.

    Google Scholar 

  3. Isaev, S.K., Kornienko, L.S., and Lariontsev, E.G., Emission kinetics of a hemispherical-cavity CaF2:Dy2+ laser, Kvantovaya Elektron. (Moscow), 1973, vol. 5, no. 17, pp. 41–46.

    Google Scholar 

  4. Kaminskii, A.A., Laser Crystals, Their Physics and Properties, Springer Series in Optical Sciences, vol, 14, Berlin: Springer, 1990, 2nd ed.

  5. Lucca, A., Jacquemet, M., Druon, F., Balembois, F., Georges, P., Camy, P., Doualan, J.L., and Moncorgé, R., High-power tunable diode-pumped Yb3+:CaF2 laser, Opt. Lett., 2004, vol. 29, no. 16, pp. 1879–1881.https://doi.org/10.1364/OL.29.001879

    Article  CAS  PubMed  Google Scholar 

  6. Kessler, A., Hornung, M., Keppler, S., Schorcht, F., Hellwing, M., Liebetrau, H., Körner, J., Sävert, A., Siebold, M., Schnepp, M., Hein, J., and Kaluza, M.C., 16.6 J chirped femtosecond laser pulses from a diode-pumped Yb:CaF2 amplifier, Opt. Lett., 2014, vol. 39, no. 6, pp. 1333–1336.https://doi.org/10.1364/OL.39.001333

    Article  CAS  PubMed  Google Scholar 

  7. Shand, W.A., Single crystal growth and some properties of LiYF4, J. Cryst. Growth, 1969, vol. 5, no. 2, pp. 143–146.https://doi.org/10.1016/0022-0248(69)90028-1

    Article  CAS  Google Scholar 

  8. Nurtdinova, L.A. and Korableva, S.L., Enhanced efficiency ultraviolet LiYxLu1–xF4:RE3+ (RE = Ce,Yb) laser, Laser Phys. Lett., 2014, vol. 11, paper 125807.https://doi.org/10.1088/1612-2011/11/12/125807

  9. Farukhshin, I.I., Nizamutdinov, A.S., Korableva, S.L., and Semashko, V.V., Ultra-short pulses UV lasing in multifunctional Ce:LiY0.3Lu0.7F4 active medium, Opt. Mater. Express, 2016, vol. 6, no. 4, pp. 1131–1137.https://doi.org/10.1364/OME.6.001131

    Article  CAS  Google Scholar 

  10. Shavelev, A.A., Nizamutdinov, A.S., Marisov, M.A., Farukhshin, I.I., Morozov, O.A., Rakhimov, N.F., Lukinova, E.V., Korableva, S.L., and Semashko, V.V., Single crystals with advanced laser properties LiCaAlF6:Ce3+ grown by Bridgman technique, J. Cryst. Growth, 2018, vol. 485 P, pp. 73–77.https://doi.org/10.1016/j.jcrysgro.2018.01.005

  11. Dubinskii, M.A., Semashko, V.V., Naumov, A.K., Abdulsabirov, R.Yu., and Korableva, S.L., Ce3+-doped colquiriite, J. Mod. Opt., 1993, vol. 40, no. 1, pp. 1–5.https://doi.org/10.1080/09500349314550011

    Article  CAS  Google Scholar 

  12. Gektin, A., Shiran, N., Neicheva, S., Gavrilyuk, V., Bensalah, A., Fukuda, T., and Shimamura, K., LiCaAlF6:Ce crystal: a new scintillator, Nucl. Instrum. Methods Phys. Res., Sect. A, 2002, vol. 486, nos. 1–2, pp. 274–277.https://doi.org/10.1016/S0168-9002(02)00717-9

    Article  CAS  Google Scholar 

  13. Payne, S.A., Chase, L.L., and Wilke, G.D., Optical spectroscopy of the new laser materials, LiSrAlF6:Cr3+ and LiCaAlF6:Cr3+, J. Lumin., 1989, vol. 44, no. 3, pp. 167–176.https://doi.org/10.1016/0022-2313(89)90052-5

    Article  CAS  Google Scholar 

  14. Alimov, O.K., Basiev, T.T., Doroshenko, M.E., Fedorov, P.P., Konyushkin, V.A., Nakladov, A.N., and Osiko, V.V., Investigation of Nd3+ ions spectroscopic and laser properties in SrF2 fluoride single crystal, Opt. Mater., 2012, vol. 34, no. 5, pp. 799–802.https://doi.org/10.1016/j.optmat.2011.11.010

    Article  CAS  Google Scholar 

  15. Wojtowicz, A.J., Glodo, J., Wisniewski, D., and Lempickia, A., Scintillation mechanism in RE-activated fluorides, J. Lumin., 1997, vols. 72–74, pp. 731–733.https://doi.org/10.1016/S0022-2313(97)80790-9

    Article  Google Scholar 

  16. Vladimirov, S.V., Kaftanov, V.S., and Nilov, A.F., Scintillation characteristics of BaF2 crystals, At. Energ., 2001, vol. 90, no. 1, pp. 49–55.

    Article  Google Scholar 

  17. Basiev, T.T., Garnov, S.V., Vovchenko, V.I., Karasik, A.Y., Klimentov, S.M., Konyushkin, V.A., Kravtsov, S.B., Malyutin, A.A., Papashvili, A.G., Pivovarov, P.A., and Chunaev, D.S., Direct amplification of picosecond pulses in \({\text{F}}_{2}^{ - }\):LiF crystals, Quantum Electron., 2006, vol. 36, no. 7, pp. 609–611.https://doi.org/10.1070/QE2006v036n07ABEH01317110.1070/QE2006v036n07ABEH013171

    Article  CAS  Google Scholar 

  18. Akchurin, M.Sh., Gainutdinov, R.V., Smolyanskii, P.L., and Fedorov, P.P., Anomalously high fracture toughness of polycrystalline optical fluorite from the Suran deposit (South Urals), Dokl. Phys., 2006, vol. 51, no. 1, pp. 10–12. https://doi.org/10.1134/S1028335806010034

    Article  CAS  Google Scholar 

  19. Popov, P.A., Dukel’skii, K.V., Mironov, I.A., Smirnov, A.N., Smolyanskii, P.A., Fedorov, P.P., Osiko, V.V., and Basiev, T.T., Thermal conductivity of CaF2 optical ceramics, Dokl. Phys., 2007, vol. 52, no. 1, pp. 7–9. https://doi.org/10.1134/S1028335807010028

    Article  CAS  Google Scholar 

  20. Buckner, D.A., Hafner, H.C., and Kreidl, N.J., Hot-pressing magnesium fluoride, J. Am. Ceram. Soc., 1962, vol. 45, no. 9, pp. 435–438.https://doi.org/10.1111/j.1151-2916.1962.tb11189.x

    Article  CAS  Google Scholar 

  21. Parson, W.F., Optical materials research, Appl. Opt., 1972, vol. 11, no. 1, pp. 43–49.https://doi.org/10.1364/AO.11.000043

    Article  Google Scholar 

  22. Volynets, F.K., Fabrication, structure, and physicochemical properties of optical ceramics, Opt.-Mekh. Prom-st., 1973, vol. 40, no. 9, pp. 48–61.

    CAS  Google Scholar 

  23. Volynets, F.K., Optical properties and application areas of optical ceramics, Opt.-Mekh. Prom-st., 1973, vol. 40, no. 10, pp. 47–57.

    CAS  Google Scholar 

  24. Volynets, F.K., Feasibility of the fabrication of polycrystalline luminescent materials by recrystallization pressing, Izv. Akad. Nauk, Ser. Fiz., 1981, vol. 45, no. 2, pp. 315–320.

    CAS  Google Scholar 

  25. Klyavina, E.T., Mamonova, S.S., Savushkin, V.N., and Smirnov, A.N., Thermal expansion coefficient of optical ceramics based on magnesium, calcium, and barium fluorides, Opt.-Mekh. Prom-st., 1989, vol. 56, no. 9, pp. 20–22.

    Google Scholar 

  26. Ryzhikov, E.N., Advances and prospects in polycrystalline optical materials. II, Tr. Gos. Opt. Inst., 1985, vol. 58, no. 2, pp. 181–185.

    CAS  Google Scholar 

  27. Vydrik, A.G., Solov’eva, T.V., and Kharitonov, F.Ya., Prozrachnaya keramika (Transparent Ceramics), Moscow: Energiya, 1980.

  28. Alimov, O.K., Doroshenko, M.E., Pierpoint, K.A., Komandin, G.A., Nozdrin, V.S., Buchinskaya, I.I., Popov, A.I., and Fedorov, P.P., Spectral kinetic study of four-component BaF2–ZnF2–CdF2–YbF3 fluoride ceramics by selective laser excitation, Opt. Mater., 2019, vol. 94, pp. 113–120.https://doi.org/10.1016/j.optmat.2019.05.011

    Article  CAS  Google Scholar 

  29. Khazanov, E.N., Taranov, A.V., Fedorov, P.P., Kuznetsov, S.V., Basiev, T.T., Mironov, I.A., Smirnov, A.N., Dukel’skii, K.V., and Garibin, E.A., A study of the transport of thermal acoustic phonons in CaF2 single crystals and ceramics within the subterahertz frequency range, Dokl. Phys., 2009, vol. 54, no. 1, pp. 14–17. https://doi.org/10.1134/S1028335809010042

    Article  CAS  Google Scholar 

  30. Khazanov, E.N., Taranov, A.V., Gainutdinov, R.V., Akchurin, M.Sh., Basiev, T.T., Konyushkin, V.A., Fedorov, P.P., Kuznetsov, S.V., and Osiko, V.V., A Study of the Structure and Scattering Mechanisms of Subterahertz Phonons in Lithium Fluoride Single Crystals and Optical Ceramics, J. Exp. Theor. Phys., 2010, vol. 110, no. 6, pp. 983–988. https://doi.org/10.1134/S1063776110060087

    Article  CAS  Google Scholar 

  31. Akchurin, M.Sh. and Kaminskii, A.A., Effect of twinning on the structure of optical ceramics, Dokl. Phys., 2009, vol. 54, no. 2, pp. 47–50.

    Article  CAS  Google Scholar 

  32. Akchurin, M.Sh., Zakalyukin, Z.M., Koval’chuk, M.V., and Kupenko, I.I., Mechanical twinning of yttrium oxide single crystals, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2010, no. 11, pp. 923–927.

  33. Ikesue, A., Kinoshita, T., Kamata, K., and Yoshida, K., Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers, J. Am. Ceram. Soc., 1995, vol. 78, no. 4, pp. 1033–1040.https://doi.org/10.1111/j.1151-2916.1995.tb08433.x

    Article  CAS  Google Scholar 

  34. Dong, J., Ueda, K., and Kaminskii, A., Continuous-wave and Q-switched microchip laser performance of Yb:Y3Sc2Al3O12 crystals, Opt. Express, 2008, vol. 16, no. 8, pp. 5241–5251.https://doi.org/10.1364/OE.16.005241

    Article  CAS  PubMed  Google Scholar 

  35. Balashov, V.V., Bezotosnyi, V.V., Cheshev, E.A., Gordeev, V.P., Kanaev, A.Y., Kopylov, Y.L., Koromyslov, A.L., Lopukhin, K.V., Polevov, K.A., and Tupitsyn, I.M., Composite ceramic Nd3+:YAG/Cr4+:YAG laser elements, J. Russ. Laser Res., 2019, vol. 40, no. 3, pp. 237–242.https://doi.org/10.1007/s10946-019-09795-3

    Article  CAS  Google Scholar 

  36. Kravchenko, V.B. and Kopylov, Y.L., Oxide laser ceramics, Handbook on Solid-State Lasers: Materials, Systems and Applications, Denker, B. and Shklovsky, E., Eds., Oxford: Woodhead, 2013, pp. 54–81.

    Google Scholar 

  37. Permin, D.A., Balabanov, S.S., Novikova, A.V., Snetkov, I.L., Palashov, O.V., Sorokin, A.A., and Ivanov, M.G., Fabrication of Yb-doped Lu2O3–Y2O3–La2O3 solid solutions transparent ceramics by self-propagating high-temperature synthesis and vacuum sintering, Ceram. Int., 2018, vol. 45, no. 1, pp. 522–529.https://doi.org/10.1016/j.ceramint.2018.09.204

    Article  CAS  Google Scholar 

  38. Kuznetsov, I., Pestov, A., Mukhin, I., Volkov, M., Zorina, M., Chkhalo, N., and Palashov, O., Composite Yb:YAG/sapphire thin-disk active elements for high-energy high-average power lasers, Opt. Lett., 2020, vol. 45, no. 2, pp. 387–390.https://doi.org/10.1364/OL.384898

    Article  CAS  Google Scholar 

  39. Malyavin, F.F., Tarala, V.A., Kuznetsov, S.V., Kravtsov, A.A., Chikulina, I.S., Shama, M.S., Medyanik, E.V., Ziryanov, V.S., Evtushenko, E.A., Vakalov, D.S., Lapin, V.A., Kuleshov, D.S., Tarala, L.V., and Mitrofanenko, L.M., Influence of the ceramic powder morphology and forming conditions on the optical transmittance of YAG:Yb ceramics, Ceram. Int., 2019, vol. 45, no. 4, pp. 4418–4423.https://doi.org/10.1016/j.ceramint.2018.11.119

    Article  CAS  Google Scholar 

  40. Xiao, Z., Yu, S., Li, Y., Ruan, S., Kong, L.B., Huang, Q., Huang, Z., Zhou, K., Su, H., Yao, Z., Que, W., Liu, Y., Zhang, T., Wang, J., Liu, P., Shen, D., Allix, M., Zhang, J., and Tang, D., Materials development and potential applications of transparent ceramics: a review, Mater. Sci. Eng., R, 2020, vol. 139, paper 100518.https://doi.org/10.1016/j.mser.2019.100518

  41. Boudeile, J., Didierjean, J., Camy, P., Doualan, J.L., Benayad, A., Ménard, V., Moncorgé, R., Druon, F., Balembois, F., and Georges, P., Thermal behaviour of ytterbium-doped fluorite crystals under high power pumping, Opt. Express, 2008, vol. 16, no. 14, pp. 10098–10109.https://doi.org/10.1364/OE.16.010098

    Article  CAS  PubMed  Google Scholar 

  42. Fedorov, P.P., Kuznetsov, S.V., and Osiko, V.V., Elaboration of nanofluorides and ceramics for optical and laser applications, Photonic and Electronic Properties of Fluoride Materials, Tressaud, A. and Poeppelmeier, K., Eds., Amsterdam: Elsevier, 2016, pp. 7–31.

    Google Scholar 

  43. Gredin, P. and Mortier, M., Optical properties of fluoride transparent ceramics, Photonic and Electronic Properties of Fluoride Materials, Tressaud, A. and Poeppelmeier, K., Eds., Amsterdam: Elsevier, 2016, pp. 65–87.

    Google Scholar 

  44. Fedorov, P.P., Fluoride laser ceramics, Handbook on Solid-State Lasers: Materials, Systems and Applications, Denker, B. and Shklovsky, E, Eds., Oxford: Woodhead, 2013, pp. 82–109.

    Google Scholar 

  45. Doroshenko, M.E., Demidenko, A.A., Fedorov, P.P., Garibin, E.A., Gusev, P.E., Jelinkova, H., Konyshkin, V.A., Krutov, M.A., Kuznetsov, S.V., Osiko, V.V., Popov, P.A., and Shulc, J., Progress in fluoride laser ceramics, Phys. Status Solidi C, 2013, vol. 10, no. 6, pp. 952–957.https://doi.org/10.1002/pssc.201300023

    Article  CAS  Google Scholar 

  46. Basiev, T.T., Doroshenko, M.E., Konyushkin, V.A., Osiko, V.V., Fedorov, P.P., Dukel’skii, K.V., Mironov, I.A., Demidenko, V.A., and Smirnov, A.N., Optical fluoride ceramics, Izv. Akad. Nauk, Ser. Khim., 2008, vol. 57, no. 5, pp. 877–886. https://doi.org/10.1007/s11172-008-0125-5

    CAS  Google Scholar 

  47. Fedorov, P.P., Osiko, V.V., Kuznetsov, S.V., and Garibin, E.A., Fluoride laser nanoceramics, J. Phys.: Conf. Ser., 2012, vol. 345, paper 012017. http://iopscience.iop.org/1742-6596/345/1/012017

  48. He, Y., Liu, K., Xiang, B., Zhou, C., Zhang, L., Liu, G., Guo, X., Zhai, J., Li, T., and Kong, L.B., An overview on transparent ceramics with pyrochlore and fluorite structures, J. Adv. Dielectr., 2020, vol. 10, no. 03, paper 2030001.https://doi.org/10.1142/S2010135X20300017

  49. Fedorov, P.P., Luginina, A.A., and Popov, A.I., Transparent oxyfluoride glass ceramics, J. Fluorine Chem., 2015, vol. 172, pp. 22–50.https://doi.org/10.1016/j.jfluchem.2015.01.009

    Article  CAS  Google Scholar 

  50. Sorokin, N.I. and Sobolev, B.P., Fluorine-ion conductivity of different technological forms of solid electrolytes R 1–y M yF3–y (LaF3 type) (M = Ca, Sr, Ba; R are rare earth elements), Crystallogr. Rep., 2016, vol. 61, no. 3, pp. 499—505.

    Article  CAS  Google Scholar 

  51. Sorokin, N.I., Karimov, D.N., Smirnov, A.N., and Sobolev, B.P., Effect of heat treatment in a CF4 atmosphere on the ion-conductive properties of hot-pressed 95 mol % CeF3 × 5 mol % SrF2 ceramics, Crystallogr. Rep., 2019, vol. 64, no. 1, pp. 105–109.

    Article  CAS  Google Scholar 

  52. Sorokin, N.I., Smirnov, A.N., Fedorov, P.P., and Sobolev, B.P., Superionic fluoride ceramics RF3 and R0.95Sr0.05F2.95 (R = La, Ce, Pr, Nd) prepared by hot pressing, Russ. J. Electrochem., 2009, vol. 45, no. 5, pp. 606–608. https://doi.org/10.1134/S1023193509050206

    Article  CAS  Google Scholar 

  53. Akchurin, M.Sh., Gainutdinov, R.V., Garibin, E.A., Golovin, Yu.I., Demidenko, A.A., Dukel’skii, K.V., Kuznetsov, S.V., Mironov, I.A., Osiko, V.V., Smirnov, A.N., Tabachkova, N.Yu., Tyurin, A.I., Fedorov, P.P., and Shindyapin, V.V., Nanostructure of optical fluoride ceramics, Inorganic Materials: Applied Research, 2011, vol. 2(2), pp. 97–103. https://doi.org/10.1134/S207511331102002X

  54. Basiev, T.T., Doroshenko, M.E., Fedorov, P.P., Konyushkin, V.A., Kuznetsov, S.V., Osiko, V.V., and Akchurin, M.Sh., Efficient laser based on CaF2–SrF2–YbF3 nanoceramics, Opt. Lett., 2008, vol. 33, no. 5, pp. 521–523.https://doi.org/10.1364/OL.33.000521

    Article  CAS  PubMed  Google Scholar 

  55. Akchurin, M.Sh., Basiev, T.T., Demidenko, A.A., Doroshenko, M.E., Fedorov, P.P., Garibin, E.A., Gusev, P.E., Kuznetsov, S.V., Krutov, M.A., Mironov, I.A., Osiko, V.V., and Popov, P.A., CaF2:Yb laser ceramics, Opt. Mater., 2013, vol. 35, no. 3, pp. 444–450.https://doi.org/10.1016/j.optmat.2012.09.035

    Article  CAS  Google Scholar 

  56. Li, W., Mei, B., and Song, J., Nd3+, Y3+-codoped SrF2 laser ceramics, Opt. Mater., 2015, vol. 47, pp. 108–111.https://doi.org/10.1016/j.optmat.2015.07.005

    Article  CAS  Google Scholar 

  57. Zhang, F., Liu, J., Li, W., Mei, B., Jiang, D., Qian, X., and Su, L., Dual-wavelength continuous-wave and passively Q-switched Nd,Y:SrF2 ceramic laser, Opt. Eng., 2016, vol. 55, no. 10, paper 106114.https://doi.org/10.1117/1.OE.55.10.106114

  58. Doroshenko, M.E., Papashvili, A.G., Alimov, O.K., Martynova, K.A., Konyushkin, V.A., Nakladov, A.N., Osiko, V.V., Jelinkova, H., Sulc, J., and Nemec, M., Specific spectroscopic and laser properties of Tm3+ ions in hot-formed CaF2 laser ceramics, Laser Phys. Lett., 2016, vol. 13, no. 1, paper 015701.https://doi.org/10.1088/1612-2011/13/1/015701

  59. Doroshenko, M.E., Alimov, O.K., Papashvili, A.G., Martynova, K.A., Konyushkin, V.A., Nakladov, A.N., and Osiko, V.V., Formation of new Tm3+ tetragonal symmetry optical centers in CaF2 hot-formed laser ceramics, Opt. Spectrosc., 2017, vol. 122, no. 1, pp. 128–132.https://doi.org/10.1134/S0030400X17010052

    Article  CAS  Google Scholar 

  60. Jiang, Y., Jiang, B., Jiang, N., Zhang, P., Chen, S., Gan, Q., Zhang, G., Fan, J., Mao, X., Su, L., Li, J., and Zhang, L., Perfectly transparent pore-free Nd3+-doped Sr9GdF21 polycrystalline ceramics elaborated from single-crystal ceramization, J. Eur. Ceram. Soc., 2017, vol. 35, no. 15, pp. 4912–4918.https://doi.org/10.1016/j.jeurceramsoc.2017.05.054

    Article  CAS  Google Scholar 

  61. Jiang, Y., Jiang, B., Jiang, N., Zhang, P., Chen, S., Fan, J., Su, L., Li, J., and Zhang, L., Re-clustering of neodymium ions in neodymium, buffer ion-codoped alkaline-earth fluoride transparent ceramics, CrystEngComm, 2017, vol. 19, no. 31, pp. 4480–4484.https://doi.org/10.1039/C7CE00735C

    Article  CAS  Google Scholar 

  62. Jiang, Y., Jiang, B., Zhang, P., Chen, S., Gan, Q., Fan, J., Mao, X., Jiang, N., Su, L., Li, J., Yu, H., and Zhang, L., Transparent Nd-doped Ca1−xYxF2+x ceramics prepared by the ceramization of single crystals, Mater. Des., 2017, vol. 113, pp. 326–330.https://doi.org/10.1016/j.matdes.2016.10.026

    Article  CAS  Google Scholar 

  63. Jiang, Y., Jiang, B., Zhu, Q., Jiang, N., Zhang, P., Chen, S., Hu, X., Zhang, G., Fan, J., Su, L., Li, J., and Zhang, L., Effects of deformation rate on properties of Nd,Y-codoped CaF2 transparent ceramics, J. Eur. Ceram. Soc., 2018, vol. 38, no. 5, pp. 2404–2409.https://doi.org/10.1016/j.jeurceramsoc.2017.11.016

    Article  CAS  Google Scholar 

  64. Lyapin, A.A., Fedorov, P.P., Garibin, E.A., Malov, A.V., Osiko, V.V., Ryabochkina, P.A., and Ushakov, S.N., Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials, Opt. Mater., 2013, vol. 35, no. 10, pp. 1859–1864.https://doi.org/10.1016/j.optmat.2013.05.004

    Article  CAS  Google Scholar 

  65. Jiang, Y., Jiang, B., Jiang, N., Li, J., Su, L., and Zhang, L., Heat-driven tailored for eliminating Nd3+ re-clusters in Nd3+,Gd3+-codoped SrF2 laser ceramic, J. Am. Ceram. Soc., 2019, vol. 103, no. 4, pp. 2562–2568.https://doi.org/10.1111/jace.16945

    Article  CAS  Google Scholar 

  66. Ashurov, M.Kh., Boboyarova, Sh.G., Boibobeva, S.T., Nuritdinov, I., Garibin, E.A., Demidenko, A.A., Kuznetsov, S.V., and Fedorov, P.P., Irradiation behavior of ytterbium-doped calcium fluoride crystals and ceramics, Inorg. Mater., 2016, vol. 52, no. 8, pp. 842–850. https://doi.org/10.1134/S0020168516080033

    Article  CAS  Google Scholar 

  67. Qin, S., Song, J., Wang, W., Mei, B., Li, W., and Xia, Y., Study in optical and mechanical properties of Nd3+,Y3+:SrF2 transparent ceramics prepared by hot-pressing and hot-forming techniques, Crystals, 2019, vol. 9, no. 619, paper 10.https://doi.org/10.3390/cryst9120619

  68. Doroshenko, M.E., Papashvili, A.G., Alimov, O.K., Konyushkin, V.A., Nakladov, A.N., and Osiko, V.V., Spectroscopic and laser properties of Tm3+ optical centers in BaF2 single crystal and ceramics, Int. Conf. Laser Optics (LO), St. Petersburg, 2016, pp. R1–R4.

  69. Moiseeva, M.A., Alekseev, S.V., Dresvyanskii, V.P., Losev, V.F., and Martynovich, E.F., Formation of defects in lithium fluoride ceramics upon irradiation with femtosecond laser pulses, Bull. Russ. Acad. Sci.: Phys., 2016, vol. 80, no. 1, pp. 60–63.

    Article  CAS  Google Scholar 

  70. Šulc, J., Němec, M., Fibrich, M., Jelínková, H., Doroshenko, M.E., Konyushkin, V.A., Nakladov, A.N., and Osiko, V.V., Lasing of low-doped Tm:CaF2 ceramics and single crystal, Advanced Solid State Lasers Conf., Berlin, 2015, p. ATu2A.17.

  71. Liu, Z., Mei, B., Song, J., and Li, W., Fabrication and optical characterizations of Yb, Er codoped CaF2 transparent ceramic, J. Eur. Ceram. Soc., 2014, vol. 34, no. 16, pp. 4389–4394.https://doi.org/10.1016/j.jeurceramsoc.2014.06.014

    Article  CAS  Google Scholar 

  72. Zhou, W., Cai, F., Zhi, G., and Mei, B., Fabrication of highly-transparent Er:CaF2 ceramics by hot-pressing technique, Mater. Sci.–Pol., 2014, vol. 32, no. 3, pp. 358–363.https://doi.org/10.2478/s13536-013-0196-3

    Article  CAS  Google Scholar 

  73. Liu, Z., Mei, B., Song, J., and Li, W., Optical characterizations of hot-pressed erbium-doped calcium fluoride transparent ceramic, J. Am. Ceram. Soc., 2014, vol. 97, no. 8, pp. 2506–2510.https://doi.org/10.1111/jace.12956

    Article  CAS  Google Scholar 

  74. Liu, Z., Mei, B., Song, J., and Yi, G., Influence of Yb concentration on the optical properties of CaF2 transparent ceramics codoped with Er and Yb, J. Am. Ceram. Soc., 2015, vol. 98, no. 12, pp. 3905–3910.https://doi.org/10.1111/jace.13847

    Article  CAS  Google Scholar 

  75. Liu, Z., Mei, B., Song, J., Yuan, D., and Wang, Z., Microstructure and optical properties of hot-pressed Er:CaF2 transparent ceramics, J. Alloys Compd., 2015, vol. 646, pp. 760–765.https://doi.org/10.1016/j.jallcom.2015.05.272

    Article  CAS  Google Scholar 

  76. Li, W., Liu, Z., Zhou, Z., Song, J., Mei, B., and Su, L., Characterizations of a hot-pressed Er and Y codoped CaF2 transparent ceramic, J. Eur. Ceram. Soc., 2016, vol. 36, no. 14, pp. 3481–3486.https://doi.org/10.1016/j.jeurceramsoc.2016.02.006

    Article  CAS  Google Scholar 

  77. Liu, X., Mei, B., Li, W., Sun, Z., Liu, Z., and Su, L., Effect of sintering temperature on the microstructure and transparency of Nd,Y:CaF2 ceramics, Ceram. Int., 2016, vol. 42, no. 11, pp. 13285–13290.https://doi.org/10.1016/j.ceramint.2016.05.135

    Article  CAS  Google Scholar 

  78. Liu, L., Song, J., Li, W., Mei, B., Su, L., and Wang, Y., Effect of sintering temperature on the microstructure and optical properties of Mn:CaF2 transparent ceramics, Mater. Chem. Phys., 2018, vol. 204, pp. 345–349.https://doi.org/10.1016/j.matchemphys.2017.10.063

    Article  CAS  Google Scholar 

  79. Liu, Z., Jia, M., Liu, X., Jing, Q., and Liu, P., Fabrication and microstructure characterizations of transparent polycrystalline fluorite ceramics, Mater. Lett., 2018, vol. 227, pp. 233–235.https://doi.org/10.1016/j.matlet.2018.05.097

    Article  CAS  Google Scholar 

  80. Xie, X., Mei, B., Song, J., Li, W., and Si, L., Fabrication and spectral properties of Nd,La:CaF2 transparent ceramics, Opt. Mater., 2018, vol. 76, pp. 111–116.https://doi.org/10.1016/j.optmat.2017.12.033

    Article  CAS  Google Scholar 

  81. Li, W., Huang, H., Mei, B., and Song, J., Synthesis of highly sinterable Yb:SrF2 nanopowders for transparent ceramics, Opt. Mater., 2018, vol. 75, pp. 7–12.https://doi.org/10.1016/j.optmat.2017.10.009

    Article  CAS  Google Scholar 

  82. Yi, G., Li, W., Song, J., Mei, B., Zhou, Z., and Su, L., The effect of Gd3+ ions on fabrication and luminescence properties of Nd3+-doped (Ca1–xGdx)F2+x transparent ceramics, Mater. Res. Bull., 2018, vol. 102, pp. 304–310.https://doi.org/10.1016/j.materresbull.2018.02.039

    Article  CAS  Google Scholar 

  83. Lyberis, A., Patriarche, G., Gredin, P., Vivien, D., and Mortier, M., Origin of light scattering in ytterbium doped calcium fluoride transparent ceramic for high power lasers, J. Eur. Ceram. Soc., 2011, vol. 31, no. 9, pp. 1619–1630.https://doi.org/10.1016/j.jeurceramsoc.2011.02.038

    Article  CAS  Google Scholar 

  84. Lu, G., Mei, B., Song, J., Li, W., and Xing, R., Fabrication and properties of highly transparent Nd-doped CaF2 ceramics, Mater. Lett., 2014, vol. 115, pp. 162–164.https://doi.org/10.1016/j.matlet.2013.05.055

    Article  CAS  Google Scholar 

  85. Li, W., Mei, B., Song, J., and Wang, Z., Fabrication and optical property of highly transparent SrF2 ceramic, Mater. Lett., 2015, vol. 159, pp. 210–212.https://doi.org/10.1016/j.matlet.2015.06.105

    Article  CAS  Google Scholar 

  86. Sun, Z., Mei, B., Li, W., Ziu, Z., and Su, L., Effects of Nd concentration on microstructure and optical properties of Nd:CaF2 transparent ceramics, J. Am. Ceram. Soc., 2016, vol. 99, no. 12, pp. 4039–4044.https://doi.org/10.1111/jace.14463

    Article  CAS  Google Scholar 

  87. Zhu, C., Song, J., Mei, B., Li, W., and Liu, Z., Fabrication and optical characterizations of CaF2–SrF2–NdF3 transparent ceramics, Mater. Lett., 2016, vol. 167, pp. 115–117.https://doi.org/10.1016/j.matlet.2015.12.083

    Article  CAS  Google Scholar 

  88. Li, W., Huang, H., Mei, B., and Song, J., Comparison of commercial and synthesized CaF2 powders for preparing transparent ceramics, Ceram. Int., 2017, vol. 43, no. 13, pp. 10403–10409.https://doi.org/10.1016/j.ceramint.2017.05.075

    Article  CAS  Google Scholar 

  89. Li, W., Huang, H., Mei, B., Song, J., Yi, G., and Guo, X., Fabrication and characterization of polycrystalline Ho:CaF2 transparent ceramics for 2.0 μm laser application, Mater. Lett., 2017, vol. 207, pp. 37–40.https://doi.org/10.1016/j.matlet.2017.07.057

    Article  CAS  Google Scholar 

  90. Xiong, F., Song, J., Li, W., Mei, B., and Su, L., Influence of sintering conditions on the microstructure and optical properties of Eu:CaF2 transparent ceramic, Mater. Res. Bull., 2017, vol. 95, pp. 138–145.https://doi.org/10.1016/j.materresbull.2017.07.028

    Article  CAS  Google Scholar 

  91. Sun, Z., Mei, B., Li, W., Liu, X., and Su, L., Synthesis and optical characterizations of Nd,Y:CaF2 transparent ceramics, Opt. Mater., 2017, vol. 71, pp. 35–40.https://doi.org/10.1016/j.optmat.2016.06.033

    Article  CAS  Google Scholar 

  92. Li, W., Huang, H., Mei, B., Song, J., and Xu, X., Effect of Y3+ ion doping on the microstructure, transmittance and thermal properties of CaF2 transparent ceramics, J. Alloys Compd., 2018, vol. 747, pp. 359–365.https://doi.org/10.1016/j.jallcom.2018.03.059

    Article  CAS  Google Scholar 

  93. Sarthou, J., Duquesne, J.-Y., Becerra, L., Gredin, P., and Mortier, M., Thermal conductivity measurements of Yb:CaF2 transparent ceramics using the 3ω method, J. Appl. Phys., 2017, vol. 121, paper 245108.https://doi.org/10.1063/1.4990282

  94. Wei, J.-B., Toci, G., Pirri, A., Patrizi, B., Feng, Y.-G., Vannini, M., and Li, J., Fabrication and property of Yb:CaF2 laser ceramics from co-precipitated nanopowders, J. Inorg. Mater., 2019, vol. 34, no. 12, pp. 1341–1348.

    Article  Google Scholar 

  95. Chen, X. and Wu, Y., High-entropy transparent fluoride laser ceramics, J. Am. Ceram. Soc., 2020, vol. 103, no. 2, pp. 750–756.https://doi.org/10.1111/jace.16842

    Article  CAS  Google Scholar 

  96. Yi, G., Mei, B., Li, W., Song, J., Zhou, Z., and Su, L., Microstructural and optical properties of Pr3+:(Ca0.97Gd0.03)F2.03 transparent ceramics sintered by vacuum hot-pressing method, J. Lumin., 2019, vol. 214, paper 116575.https://doi.org/10.1016/j.jlumin.2019.116575

  97. Yi, G., Li, W., Song, J., Mei, B., Zhou, Z., and Su, L., Preparation and characterizations of Pr3+:CaF2 transparent ceramics with different doping concentrations, Ceram. Int., 2019, vol. 45, no. 3, pp. 3541–3546.https://doi.org/10.1016/j.ceramint.2018.11.012

    Article  CAS  Google Scholar 

  98. Kolesnichenko, V.G., Zamula, M.V., Yurchenko, Yu.V., Chudinovych, O.V., Makogon, V.A., Tyschenko, N.I., Shyrokov, O.V., Sameliuk, A.V., Tomila, T.V., Kornienko, O.A., and Ragulya, A.V., Spark plasma sintering of magnesium fluoride nanopowders, Powder Metall. Met. Ceram., 2019, vol. 58, nos. 7–8, pp. 406–415.https://doi.org/10.1007/s11106-019-00090-z

    Article  CAS  Google Scholar 

  99. Chen, X. and Wu, Y., High concentration Ce3+ doped BaF2 transparent ceramics, J. Alloys Compd., 2020, vol. 817, paper 153075.https://doi.org/10.1016/j.jallcom.2019.153075

  100. Kallel, T., Hassairi, M.A., Dammak, M., Lyberis, A., Gredin, P., and Mortier, M., Spectra and energy levels of Yb3+ ions in CaF2 transparent ceramics, J. Alloys Compd., 2014, vol. 584, pp. 261–268.https://doi.org/10.1016/j.jallcom.2013.09.057

    Article  CAS  Google Scholar 

  101. Fedorov, P.P., Ashurov, M.Kh., Boboyarova, Sh.G., Boibobeva, S., Nuritdinov, I., Garibin, E.A., Kuznetsov, S.V., and Smirnov, A.N., Absorption and luminescence spectra of CeF3-doped BaF2 single crystals and nanoceramics, Inorg. Mater., 2016, vol. 52, no. 2, pp. 213–217. https://doi.org/10.1134/S0020168516020047

    Article  CAS  Google Scholar 

  102. Li, J., Chen, X., Tang, L., Li, Y., and Wu, Y., Fabrication and properties of transparent Nd-doped BaF2 ceramics, J. Am. Ceram. Soc., 2019, vol. 102, no. 1, pp. 178–184.https://doi.org/10.1111/jace.15915

    Article  CAS  Google Scholar 

  103. Yi, G., Li, W., Song, J., Mei, B., Zhou, Z., and Su, L., Structural, spectroscopic and thermal properties of hot-pressed Nd:(Ca0.94Gd0.06)F2.06 transparent ceramics, J. Eur. Ceram. Soc., 2018, vol. 38, no. 9, pp. 3240–3245.https://doi.org/10.1016/j.jeurceramsoc.2018.03.016

    Article  CAS  Google Scholar 

  104. Zhou, Z., Li, W., Song, J., Yi, G., Mei, B., and Su, L., Synthesis and characterization of Nd3+ doped SrF2 nanoparticles prepared by precipitation method, Ceram. Int., 2017, vol. 44, no. 4, pp. 4344–4350.https://doi.org/10.1016/j.ceramint.2017.12.028

    Article  CAS  Google Scholar 

  105. Zhou, Z., Mei, B., Song, J., Li, W., Yang, Y., and Yi, G., Effects of Sr2+ content on microstructure and spectroscopic properties of Nd3+ doped Ca1–xSrxF2 transparent ceramics, J. Alloys Compd., 2019, vol. 811, paper 152046.https://doi.org/10.1016/j.jallcom.2019.152046

  106. Liu, Z., Jia, M., Yi, G., Mei, B., Jing, Q., and Liu, P., Fabrication and microstructure characterizations of transparent Er:CaF2 composite ceramic, J. Am. Ceram. Soc., 2019, vol. 102, no. 1, pp. 285–293.https://doi.org/10.1111/jace.15902

    Article  CAS  Google Scholar 

  107. Liu, J., Song, J., Mei, B., Li, W., and Wang, S., Fabrication and mid-infrared property of Er:CaF2 transparent ceramics, Mater. Res. Bull., 2018, vol. 111, pp. 158–164.https://doi.org/10.1016/j.materresbull.2018.11.010

    Article  CAS  Google Scholar 

  108. Liu, Z., Gao, Q., Chang, F., Jia, M., Wei, M., Yi, G., Liu, P., and Jing, Q., Influence of preparing conditions on the hot-pressed sintering of transparent polycrystalline fluorite ceramics, J. Appl. Ceram. Technol., 2019, vol. 16, no. 6, pp. 2441–2448.https://doi.org/10.1111/ijac.13296

    Article  CAS  Google Scholar 

  109. Yi, G., Mei, B., Li, W., Song, J., Liu, Z., Zhou, Z., and Su, L., Synthesis and luminescence characterization of Pr3+, Gd3+ co-doped SrF2 transparent ceramics, J. Am. Ceram. Soc., 2020, vol. 103, no. 1, pp. 279–286.https://doi.org/10.1111/jace.16728

    Article  CAS  Google Scholar 

  110. Li, D., Zheng, D., and Shi, J., Fluorescence and Judd–Ofelt analysis of Er3+ doped CaF2 transparent ceramic, Adv. Mater. Res., 2014, vols. 875–877, pp. 23–27.https://doi.org/10.4028/www.scientific.net/AMR.875-877.23

    Article  CAS  Google Scholar 

  111. Yuan, D., Li, W., Mei, B., and Song, J., Synthesis and characterization of Nd3+-doped CaF2 nanoparticles, J. Nanosci. Nanotechnol., 2015, vol. 15, no. 12, pp. 9741–9745.https://doi.org/10.1166/jnn.2015.10345

    Article  CAS  PubMed  Google Scholar 

  112. Zhou, Z., Li, W., Song, J., Mei, B., Yi, G., and Yang, Y., Application of Judd–Ofelt theory in analyzing Nd3+ doped SrF2 and CaF2 transparent ceramics, J. Eur. Ceram. Soc., 2019, vol. 39, no. 7, pp. 2446–2452.https://doi.org/10.1016/j.jeurceramsoc.2019.02.033

    Article  CAS  Google Scholar 

  113. Zhu, T., Mei, B., Li, W., Yang, Y., and Song, J., Fabrication, microstructure and spectral properties of Nd:SrF2 transparent ceramics with different concentration of La3+ ions, Opt. Mater., 2019, vol. 89, pp. 598–603.https://doi.org/10.1016/j.optmat.2019.01.024

    Article  CAS  Google Scholar 

  114. Lan, Y., Mei, B., Li, W., Xiong, F., and Song, J., Preparation and scintillation properties of Eu2+:CaF2 scintillation ceramics, J. Lumin., 2019, vol. 208, pp. 183–187.https://doi.org/10.1016/j.jlumin.2018.12.047

    Article  CAS  Google Scholar 

  115. Yang, Y., Li, W., Mei, B., Song, J., Yi, G., Zhou, Z., and Liu, J., Synthesis and enhanced upconversion luminescence upon two-wavelength excitation of Er3+:CaF2 transparent ceramics, J. Lumin., 2019, vol. 213, pp. 504–509.https://doi.org/10.1016/j.jlumin.2019.05.010

    Article  CAS  Google Scholar 

  116. Rodnyi, P.A., Khanin, V.M., Voloshinovskii, A.S., Striganyuk, G.B., Garibin, E.A., Gusev, P.E., Krutov, M.A., and Demidenko, A.A., Optical and luminescence characteristics of BaF2 and BaF2:Tm in vacuum UV and UV spectral regions, Opt. Spectrosc., 2014, vol. 117, no. 3, pp. 392–395.

    Article  CAS  Google Scholar 

  117. Li, W., Huang, H., Mei, B., Wang, C., Liu, J., Wang, S., Jiang, D., and Su, L., Fabrication, microstructure and laser performance of Yb3+ doped CaF2–YF3 transparent ceramics, Ceram. Int., 2020, vol. 46, no. 11 (B), pp. 19530–19536.https://doi.org/10.1016/j.ceramint.2020.05.003

  118. Gao, Y., Mei, B., Li, W., Zhou, Z., and Liu, Z., Effect of Yb3+ concentration on microstructure and optical properties of Yb:SrF2 transparent ceramics, Opt. Mater., 2020, vol. 105, paper 109869.https://doi.org/10.1016/j.optmat.2020.109869

  119. Wan, Z., Li, W., Mei, B., Liu, Z., and Yang, Y., Fabrication and spectral properties of Ho-doped calcium fluoride transparent ceramics, J. Lumin., 2020, vol. 223, paper 117188.https://doi.org/10.1016/j.jlumin.2020.117188

  120. Wang, C., Hao, Q., Li, W., Huang, H., Wang, S., Jiang, D., Liu, J., Mei, B., and Su, L., 575-fs passively mode-locked Yb:CaF2 ceramic laser, Chin. Phys. B, 2020, vol. 29, no. 7, paper 074205.https://doi.org/10.1088/1674-1056/ab8ac5

  121. Kitajima, S., Yamakado, K., Shirakawa, A., Ueda, K., Ezura, Y., and Ishizawa, H., Yb3+-doped CaF2–LaF3 ceramics laser, Opt. Lett., 2017, vol. 42, no. 9, pp. 1724–1727.https://doi.org/10.1364/OL.42.001724

    Article  CAS  PubMed  Google Scholar 

  122. Aubry, P., Bensalah, A., Gredin, P., Patriarche, G., Vivien, D., and Mortier, M., Synthesis and optical characterizations of Yb-doped CaF2 ceramics, Opt. Mater., 2009, vol. 31, no. 5, pp. 750–753.https://doi.org/10.1016/j.optmat.2008.03.022

    Article  CAS  Google Scholar 

  123. Samuel, P., Ishizawa, H., Ezura, Y., Ueda, K.I., and Babu, S.M., Spectroscopic analysis of Eu doped transparent CaF2 ceramics at different concentration, Opt. Mater., 2011, vol. 33, no. 5, pp. 735–737.https://doi.org/10.1016/j.optmat.2010.10.044

    Article  CAS  Google Scholar 

  124. Chen, H., Ikesue, A., Noto, H., Uehara, H., Hishinuma, Y., Muroga, T., and Yashuhara, R., Nd3+-activated CaF2 ceramic lasers, Opt. Lett., 2019, vol. 44, no. 13, pp. 3378–3381.https://doi.org/10.1364/OL.44.003378

    Article  CAS  PubMed  Google Scholar 

  125. Chen, S. and Wu, Y., Influence of temperature on the spark plasma sintering of calcium fluoride ceramics, J. Mater. Res., 2014, vol. 29, no. 19, pp. 2297–2302.https://doi.org/10.1557/jmr.2014.222

    Article  CAS  Google Scholar 

  126. Li, W., Mei, B., Song, J., Zhu, W., and Yi, G., Yb3+ doped CaF2 transparent ceramics by spark plasma sintering, J. Alloys Compd., 2016, vol. 660, pp. 370–374.https://doi.org/10.1016/j.jallcom.2015.11.104

    Article  CAS  Google Scholar 

  127. Wang, P., Yang, M., Zhang, S., Tu, R., Goto, T., and Zhang, L., Suppression of carbon contamination in SPSed CaF2 transparent ceramics by Mo foil, J. Eur. Ceram. Soc., 2017, vol. 37, no. 13, pp. 4103–4107.https://doi.org/10.1016/j.jeurceramsoc.2017.04.070

    Article  CAS  Google Scholar 

  128. Kato, T., Okada, G., Fukuda, K., and Yanagida, T., Development of BaF2 transparent ceramics and evaluation of the scintillation properties, Radiat. Meas., 2017, vol. 106, pp. 140–145.https://doi.org/10.1016/j.radmeas.2017.03.032

    Article  CAS  Google Scholar 

  129. Nakamura, F., Kato, T., Okada, G., Kawaguchi, N., Fukuda, K., and Yanagida, T., Scintillation and dosimeter properties of CaF2 transparent ceramics doped with Nd3+ produced by SPS, J. Eur. Ceram. Soc., 2017, vol. 37, no. 15, pp. 4919–4924.https://doi.org/10.1016/j.jeurceramsoc.2017.06.010

    Article  CAS  Google Scholar 

  130. Nakamura, F., Kato, T., Okada, G., Kawaguchi, N., Fukuda, K., and Yanagida, T., Scintillation and storage luminescence properties of MgF2 transparent ceramics doped with Ce3+, Opt. Mater., 2017, vol. 72, pp. 470–475.https://doi.org/10.1016/j.optmat.2017.06.043

    Article  CAS  Google Scholar 

  131. Nakamura, F., Kato, T., Okada, G., Kawaguchi, N., Fukuda, K., and Yanagida, T., Scintillation and TSL properties of MgF2 transparent ceramics doped with Eu2+ synthesized by spark plasma sintering, J. Alloys Compd., 2017, vol. 726, pp. 67–73.https://doi.org/10.1016/j.jallcom.2017.07.320

    Article  CAS  Google Scholar 

  132. Nakamura, F., Kato, T., Okada, G., Kawaguchi, N., Fukuda, K., and Yanagida, T., Scintillation, TSL and RPL properties of MgF2 transparent ceramic and single crystal, Ceram. Int., 2017, vol. 43, no. 9, pp. 7211–7215.https://doi.org/10.1016/j.ceramint.2017.03.009

    Article  CAS  Google Scholar 

  133. Nakamura, F., Kato, T., Okada, G., Kawano, N., Kawaguchi, N., Fukuda, K., and Yanagida, T., Scintillation, dosimeter and optical properties of MgF2 transparent ceramics doped with Gd3+, Mater. Res. Bull., 2018, vol. 98, pp. 83–88.https://doi.org/10.1016/j.materresbull.2017.09.058

    Article  CAS  Google Scholar 

  134. Nakamura, F., Kato, T., Okada, G., Kawaguchi, N., Fukuda, K., and Yanagida, T., Scintillation and dosimeter properties of CaF2 translucent ceramic produced by SPS, J. Eur. Ceram. Soc., 2017, vol. 37, no. 4, pp. 1707–1711.https://doi.org/10.1016/j.jeurceramsoc.2016.11.016

    Article  CAS  Google Scholar 

  135. Nakamura, F., Kato, T., Okada, G., Kawaguchi, N., Fukuda, K., and Yanagida, T., Scintillation and dosimeter properties of CaF2 transparent ceramic doped with Eu2+, Ceram Int., 2017, vol. 43, no. 1 (A), pp. 604–609.https://doi.org/10.1016/j.ceramint.2016.09.201

  136. Kawano, N., Nakauchi, D., Fukuda, K., Okada, G., Kawaguchi, N., and Yanagida, T., Comparative study of scintillation and dosimetric properties between Tm-doped CaF2 translucent ceramic and single crystal, Jpn. J. Appl. Phys., 2018, vol. 57, no. 10, paper 102401.https://doi.org/10.7567/JJAP.57.102401

  137. Okada, G., Nakamura, F., Kawano, N., Kawaguchi, N., Kasap, S., and Yanagida, T., Radiation-induced luminescence centres in Sm:MgF2 ceramics, Nucl. Instrum. Methods Phys. Res., Sect. B, 2018, vol. 435, pp. 268–272.https://doi.org/10.1016/j.nimb.2018.01.032

    Article  CAS  Google Scholar 

  138. Kato, T., Kawano, N., Okada, G., Kawaguchi, N., Fukuda, K., and Yanagida, T., Scintillation properties of SrF2 translucent ceramics and crystal, Optik, 2018, vol. 168, pp. 956–962.https://doi.org/10.1016/j.ijleo.2018.04.082

    Article  CAS  Google Scholar 

  139. Kawano, N., Nakauchi, D., Nakamura, F., and Yanagida, T., Scintillation and dosimetric properties of Dy-doped CaF2 translucent ceramic and single crystal, J. Ceram. Soc. Jpn., 2020, vol. 128, no. 2, pp. 57–61.https://doi.org/10.2109/jcersj2.19147

    Article  CAS  Google Scholar 

  140. Kato, T., Nakauchi, D., Kawaguchi, N., and Yanagida, T., Radio-photoluminescence phenomenon in non-doped CaF2 ceramic, Mater. Lett., 2020, vol. 270, paper 127688.https://doi.org/10.1016/j.matlet.2020.127688

  141. Sarthou, J., Aballea, P., Patriarche, G., Serier-Brault, H., Suganuma, A., Gredin, P., and Mortier, M., Wet-route synthesis and characterization of Yb:CaF2 optical ceramics, J. Am. Ceram. Soc., 2016, vol. 99, no. 6, pp. 1992–2000.https://doi.org/10.1111/jace.14216

    Article  CAS  Google Scholar 

  142. Luo, J., Sahi, S., Groza, M., Wang, Z., Ma, L., Chen, W., Burger, A., Kenarangui, R., Sham, T.-K., and Selim, F.A., Luminescence and scintillation properties of BaF2–Ce transparent ceramic, Opt. Mater., 2016, vol. 58, pp. 353–356.https://doi.org/10.1016/j.optmat.2016.05.059

    Article  CAS  Google Scholar 

  143. Luo, J., Ye, L., and Xu, J., Preparation and properties of Ce3+:BaF2 transparent ceramics by vacuum sintering, J. Nanosci. Nanotechnol., 2016, vol. 16, no. 4, pp. 3985–3989.https://doi.org/10.1166/jnn.2016.11873

    Article  CAS  PubMed  Google Scholar 

  144. Shirakawa, A., Nakao, H., Higashi, Y., Ueda, K., Ezura, Y., and Ishizawa, H., Yb3+-doped CaF2–LaF3 ceramic laser, Advanced Solid-State Lasers Congr., Paris, 2013, paper JTh5A.7.https://doi.org/10.1364/ASSL.2013.JTh5A.7

  145. Druon, F., Aballea, P., Suganuma, A., Gredin, P., Georges, P., and Mortier, M., Diode-pumped laser demonstration with Yb:CaF2 ceramics, Advanced Solid State Lasers Congr., Shanghai, 2014, paper AM4A.2.https://doi.org/10.1364/ASSL.2014.AM4A.2

  146. Zhang, C. and Zhang, L., Effects of Na+ on spectral properties of Er3+:CaF2 transparent ceramic, Key Eng. Mater., 2012, vols. 531–532, pp. 307–311.https://doi.org/10.4028/www.scientific.net/KEM.531-532.307

    Article  CAS  Google Scholar 

  147. Basiev, T.T., Voronov, V.V., Konyuskin, V.A., Kuznetsov, S.V., Lavrishchev, S.V., Osiko, V.V., Fedorov, P.P., Ankudinov, A.B., and Alymov, M.I., Optical lithium fluoride ceramics, Dokl. Phys., 2007, vol. 52, no. 12, pp. 677–680.https://doi.org/10.1134/S1028335807120099

    Article  CAS  Google Scholar 

  148. Boiko, B.G., Garber, R.I., and Kosevich, A.M., Obratimaya plastichnost' kristallov (Reversible Plasticity of Crystals), Moscow: Nauka, 1991.

  149. Reppich, B., Inhomogeneous dislocation distributions and the formation of dislocation cell structure, J. Mater. Sci., 1971, vol. 6, pp. 267–269.https://doi.org/10.1007/BF00550025

    Article  CAS  Google Scholar 

  150. Reppich, B. and Streb, G., Steady state deformation and dislocation structure of pure and Mg-doped LiF single crystals. I. Analysis of steady state deformation, Phys. Status Solidi A, 1973, vol. 15, no. 1, pp. 77–85.https://doi.org/10.1002/pssa.2210150108

    Article  CAS  Google Scholar 

  151. Streb, G. and Reppich, B., Steady state deformation and dislocation structure of pure and Mg-doped LiF single crystals. II. Etch pit studies of dislocation structure, Phys. Status Solidi A, 1973, vol. 16, no. 2, pp. 493–505.https://doi.org/10.1002/pssa.2210160219

    Article  CAS  Google Scholar 

  152. Sherry, W.M. and Van der Sande, J.B., Microstructural characterization of calcium fluoride single crystals deformed in steady state, J. Mater. Sci., 1981, vol. 16, pp. 1477–1489.https://doi.org/10.1007/BF00553961

    Article  CAS  Google Scholar 

  153. Kuznetsov, S.V. and Fedorov, P.P., Morphological stability of solid–liquid interface during melt crystallization of M1–xRxF2+x solid solutions, Inorg. Mater., 2008, vol. 44, no. 13, pp. 1434–1458.https://doi.org/10.1134/S0020168508130037

    Article  CAS  Google Scholar 

  154. Fedorov, P.P. and Osiko, V.V., Crystal growth of fluorides, Bulk Crystal Growth of Electronic, Optical and Optoelectronic Materials, Capper, P., Ed., Wiley Series in Materials for Electronic and Optoelectronic Applications, New York: Wiley, 2005, pp. 339–356.

  155. Konyushkin, V.A., Nakladov, A.N., Konyushkin, D.V., Doroshenko, M.E., Osiko, V.V., and Karasik, A.Ya., Planar ceramic waveguide structures for amplifiers and lasers, Kvantovaya Elektron. (Moscow), 2013, vol. 43, no. 1, pp. 60–62.

    Article  CAS  Google Scholar 

  156. Haroun, N.A., Abdel-Azim, M.S., and Orabi, G.I., Effect of additives on sintering of CaF2, J. Am. Ceram. Soc., 1971, vol. 54, no. 12, p. 640.https://doi.org/10.1111/j.1151-2916.1971.tb16024.x

    Article  CAS  Google Scholar 

  157. Zhi, G., Mei, B., Zhou, W., Song, J., Li, W., and Zhang, Y., Effects of sintering additives on preparation of CaF2 transparent ceramics, J. Wuhan Univ. Technol.–Mater. Sci. Ed., 2011, vol. 26, pp. 1179–1183.

    CAS  Google Scholar 

  158. Li, W., Sun, Y., Kou, H., Chen, M., Shi, Y., Feng, X., Pan, Y., and Guo, J., Preparation of cerium fluoride suspensions for grain-orientation by a strong magnetic field assisted slip-casting process, Ceram. Int., 2014, vol. 40, no. 7 (B), pp. 10317–10322.https://doi.org/10.1016/j.ceramint.2014.03.003

  159. Li, W., Kou, H., Chen, M., Shi, Y., Feng, X., Pan, Y., and Gou, J., Fabrication and characterization of grain-oriented cerium fluoride ceramics from a slip-casting process in a magnetic field, J. Mater. Sci., 2014, vol. 49, pp. 5030–5034.https://doi.org/10.1007/s10853-014-8207-2

    Article  CAS  Google Scholar 

  160. Shcheulin, A.S., Angervaks, A.E., Semenova, T.S., Koryakina, L.F., Petrova, M.A., Fedorov, P.P., Reiterov, V.M., Garibin, E.A., and Ryskin, A.I., Additive colouring of CaF2:Yb crystals: determination of Yb2+ concentration in CaF2:Yb crystals and ceramics, Appl. Phys. B, 2013, vol. 111, pp. 551–557. https://doi.org/10.1007/s00340-013-5372-y

    Article  CAS  Google Scholar 

  161. Azarov, V.V. and Skorobogatov, B.S., Reduction of rare-earth ions in LaF3 single crystals, Izv. Akad. Nauk SSSR, Neorg. Mater., 1968, vol. 4, no. 10, pp. 1792–1793.

    CAS  Google Scholar 

  162. Kaczmarek, S.M., Tsuboi, T., Ito, M., Boulon, G., and Leniec, G., Optical study of Yb3+/ Yb2+ conversion in CaF2 crystals, J. Phys.: Condens. Matter, 2005, vol. 17, no. 25, pp. 3771–3786.https://doi.org/10.1088/0953-8984/17/25/005

    Article  CAS  Google Scholar 

  163. Angervaks, A.E., Shcheulin, A.S., Ryskin, A.I., Garibin, E.A., Krutov, M.A., Gusev, P.E., Demidenko, A.A., Kuznetsov, S.V., Chernova, E.V., and Fedorov, P.P., Di- and trivalent ytterbium distributions along a melt-grown CaF2 crystal, Inorg. Mater, 2014, vol. 50, no. 7, pp. 733–737.https://doi.org/10.1134/S0020168514070024

    Article  CAS  Google Scholar 

  164. Fedorov, P.P., Osiko, V.V., Basiev, T.T., Orlovskii, Yu.V., Dykel’skii, K.V., Mironov, I.A., Demidenko, V.A., and Smirnov, A.N., Optical fluoride and oxysulphide ceramics: preparation and characterization, in Developments in Ceramic Materials Research, NOVA Science, 2007, pp. 53–95.

    Google Scholar 

  165. Fedorov, P.P., Kuznetsov, S.V., Mayakova, M.N., Voronov, V.V., Ermakov, R.P., Baranchikov, A.E., and Osiko, V.V., Coprecipitation from aqueous solutions to prepare binary fluorides, Russ. J. Inorg. Chem., 2011, vol. 56, no. 10, pp. 1525–1531. https://doi.org/10.1134/S003602361110007X

    Article  CAS  Google Scholar 

  166. Kuznetsov, S.V., Fedorov, P.P., Voronov, V.V., Samarina, K.S., Ermakov, R.P., and Osiko, V.V., Synthesis of Ba4R3F17 (R stands for rare-earth elements) powders and transparent compacts on their base, Russ. J. Inorg. Chem., 2010, vol. 55, no. 4, pp. 484–493. https://doi.org/10.1134/S0036023610040029

    Article  CAS  Google Scholar 

  167. Nizamutdinov, A.S., Kuznetsov, S.V., Madirov, E.I., Voronov, V.V., Khadiev, A.R., Yapryntsev, A.D., Ivanov, V.K., Semashko, V.V., and Fedorov, P.P., Down-conversion luminescence of Yb3+ in novel Ba4Y3F17:Yb:Ce solid solution by excitation of Ce3+ in UV spectral range, Opt. Mater., 2020, vol. 108, paper 110185.https://doi.org/10.1016/j.optmat.2020.110185

  168. Fedorov P.P., Mayakova, M.N., Kuznetsov, S.V., Voronov, V.V., Ermakov, R.P., Samarina, K.S., Popov, A.I., and Osiko, V.V., Co-precipitation of yttrium and barium fluorides from aqueous solutions, Mater. Res. Bull., 2012, vol. 47, no. 7, pp. 1794–1799.https://doi.org/10.1016/j.materresbull.2012.03.027

    Article  CAS  Google Scholar 

  169. Karbowiak, M. and Cichos, J., Does BaYF5 nanocrystals exist? – The BaF2–YF3 solid solution revisited using photoluminescence spectroscopy, J. Alloys Compd., 2016, vol. 673, pp. 258–264.https://doi.org/10.1016/j.jallcom.2016.02.255

    Article  CAS  Google Scholar 

  170. Luginina, A.A., Fedorov, P.P., Kuznetsov, S.V., Mayakova, M.N., Voronov, V.V., and Baranchikov, A.E., Characteristic features of the synthesis of barium hydrogen fluoride and barium fluoride from nitrate solutions, Nanosist.: Fiz., Khim., Mat., 2012, vol. 3, no. 5, pp. 125–137.

    Google Scholar 

  171. Luginina, A.A., Baranchikov, A.E., Popov, A.I., and Fedorov, P.P., Preparation of barium monohydrofluoride BaF2 ⋅ HF from nitrate aqueous solutions, Mater. Res. Bull., 2014, vol. 49, no. 1, pp. 199–205.https://doi.org/10.1016/j.materresbull.2013.08.074

    Article  CAS  Google Scholar 

  172. Rozhnova, Yu.A., Kuznetsov, S.V., Luginina, A.A., Voronov, V.V., Ryabova, A.V., Pominova, D.V., Ermakov, R.P., Usachev, V.A., Kononenko, N.E., Baranchikov, A.E., Ivanov, V.K., and Fedorov, P.P., New Sr1–xyRx(NH4)yF2+xy (R = Yb, Er) solid solution as precursor for high efficiency up-conversion luminophor and optical ceramics on the base of strontium fluoride, Mater. Chem. Phys., 2016, vol. 172, pp. 150–157.https://doi.org/10.1016/j.matchemphys.2016.01.055

    Article  CAS  Google Scholar 

  173. Fedorov, P.P., Mayakova, M.N., Kuznetsov, S.V., Maslov, V.A., Sorokin, N.I., Baranchikov, A.E., Ivanov, V.K., Pynenkov, A.A., Uslamina, M.A., and Nishchev, K.N., Phase diagram of the NaF–CaF2 system and the electrical conductivity of a CaF2-based solid solution, Russ. J. Inorg. Chem., 2016, vol. 61, no. 11, pp. 1472–1478. https://doi.org/10.1134/S003602361611005X

    Article  CAS  Google Scholar 

  174. Fedorov, P.P., Mayakova, M.N., Maslov, V.A., and Ivanov, V.K., The solubility of sodium and potassium fluorides in the strontium fluoride, Nanosyst.: Phys., Chem., Math., 2017, vol. 8, no. 6, pp. 830–834. https://doi.org/10.17586/2220-8054-2017-8-6-830-834

    CAS  Google Scholar 

  175. Sobolev, B.P., The Rare Earth Trifluorides. Part I, Barcelona: Inst. d’Estudis Catalans, 2000, p. 521.

    Google Scholar 

  176. Fedorov, P.P. and Rappo, A.V., NaF–CaF2–YbF3 phase diagram, Russ. J. Inorg. Chem., 2008, vol. 53, no. 7, pp. 1126–1129. https://doi.org/10.1134/S0036023608070231

    Article  Google Scholar 

  177. Aleksandrov, A.A., Mayakova, M.N., Voronov, V.V., Pominova, D.V., Kuznetsov, S.V., Baranchikov, A.E., Ivanov, V.K., Lysakova, E.I., and Fedorov, P.P., Synthesis of calcium fluoride-based upconversion phosphors, Condensed Matter and Interphases, 2020, vol. 22, no. 1, pp. 3–10. https://doi.org/10.17308/kcmf.2020.22/2524

    Google Scholar 

  178. Rodnyi, P.A., Gain, S.D., Mironov, I.A., Garibin, E.A., Demidenko, A.A., Seliverstov, D.M., Gusev, Yu.I., Fedorov, P.P., and Kuznetsov, S.V., Spectral–kinetic characteristics of crystals and nanoceramics based on BaF2 and BaF2:Ce, Phys. Solid State, 2010, vol. 52, no. 9, pp. 1910–1914. https://doi.org/10.1134/S1063783410090209

    Article  CAS  Google Scholar 

  179. Fedorov, P.P., Kuznetsov, S.V., Smirnov, A.N., Garibin, E.A., Gusev, P.E., Krutov, M.A., Chernenko, K.A., and Khanin, V.M., Microstructure and scintillation characteristics of BaF2 ceramics, Inorg. Mater., 2014, vol. 50, no. 7, pp. 738–744. https://doi.org/10.1134/S002016851407005X

    Article  CAS  Google Scholar 

  180. Batygov, S.Kh., Mayakova, M.N., Kuznetsov, S.V., and Fedorov, P.P., X-ray luminescence of BaF2:Ce3+ powders, Nanosyst.: Phys., Chem. Math., 2014, vol. 5, no. 6, pp. 752–756.

    Google Scholar 

  181. Fedorov, P.P. and Alexandrov, A.A., Synthesis of inorganic fluorides in molten salt fluxes and ionic liquid mediums, J. Fluorine Chem., 2019, vol. 227, paper 109374.https://doi.org/10.1016/j.jfluchem.2019.109374

  182. Sinyukova, I.A. and Stepanov, I.V., Synthesis of extrapure calcium and barium fluorides for the growth of optical crystals, Rost Krist., 1959, vol. 2, pp. 115–119.

    Google Scholar 

  183. Maslov, V.A., Fedorov, P.P., Voronov, V.V., Shcherbakov, V.V., Chernova, E.V., and Osiko, V.V., Fluoride micropowders for laser ceramics, Inorganic Materials: Applied Research, 2012. vol. 3(2). pp. 113–119. https://doi.org/10.1134/S2075113312020128

  184. Kupriyanova, A.K., Vasil’ev, V.K., and Batsanova, L.R., Interaction of rare-earth nitrates with potassium and ammonium fluorides in melts, Izv. Sib. Otd. Akad. Nauk SSSR. Khim., 1968, issue 1, no. 2, pp. 45–49.

  185. Fedorov, P., Mayakova, M., Alexandrov, A., Voronov, V., Kuznetsov, S., Baranchikov, A., and Ivanov, V., The melt of sodium nitrate as a medium for the synthesis of fluorides, Inorganics, 2018, vol. 6, p. 17.https://doi.org/10.3390/inorganics6020038

    Article  CAS  Google Scholar 

  186. Liu, J., Liu, P., Wang, J., Xu, X., Li, D., Zhang, J., and Nie, X., Fabrication and sintering behavior of Er:SrF2 transparent ceramics using chemically derived powder, Materials, 2018, vol. 11, no. 4, paper 475.https://doi.org/10.3390/ma11040475

  187. Aballea, P., Suganuma, A., Druon, F., Hostalrich, J., Georges, P., Gredin, P., and Mortier, M., Laser performance of diode-pumped Yb:CaF2 optical ceramics synthesized using an energy-efficient process, Optica, 2015, vol. 2, no. 4, pp. 288–291.https://doi.org/10.1364/OPTICA.2.000288

    Article  CAS  Google Scholar 

  188. Fedorov, P.P., Rozhnova, Yu.A., Luginina A.A., Kuznetsov, S.V., Chernova E.V., and Osiko, V.V., RU Patent 2 574 264, 2015.

  189. Singh, S.G., Sen, S., Patra, G.D., and Gadkari, S.C., Luminescence properties of CaF2:Mn optically transparent ceramic, J. Lumin., 2015, vol. 166, pp. 222–226.https://doi.org/10.1016/j.jlumin.2015.05.014

    Article  CAS  Google Scholar 

  190. Ghosh, M., Sen, S., Pitale, S.S., Goutam, U.K., Shinde, S., Patra, G.D., and Gadkari, S.C., Growth and optical properties of partially transparent Eu doped CaF2 ceramic, AIP Conf. Proc., 2014, vol. 1591 P, pp. 592–594.https://doi.org/10.1063/1.4872685

  191. Luginina, A.A., Fedorov, P.P., Baranchikov, A.E., Osiko, V.V., and Garibin, E.A., RU Patent 2545304, Byull. Izobret., 2015, no. 1.

  192. Zverev, V.A., Krivopustova, E.V., and Tochilina, T.V., Opticheskie materialy. Chast’ 2. Uchebnoe posobie dlya konstruktorov opticheskikh sistem i priborov (Optical Materials: Part 2. A Learning Guide for Designers of Optical Systems and Instruments), St. Petersburg: S.‑Peterburg. Nauchno-Issled. Univ. Informatsioonykh Tekhnologii, Mekhaniki i Optiki, 2013, p. 248.

  193. Lin, W.-Y. and Hon, M.-H., Effect of grain growth on hot-pressed optical magnesium fluoride ceramics, J. Am. Ceram. Soc., 1988, vol. 71, no. 3, pp. 136–137.https://doi.org/10.1111/j.1151-2916.1988.tb05034.x

    Article  Google Scholar 

  194. Zverev, N.D., Litvinenko, Yu.G., Perunina, L.M., and Seminozhenko, V.P., Mechanical strength of optical magnesium fluoride ceramics under static loads, Izv. Akad. Nauk SSSR, Neorg. Mater., 1990, vol. 26, no. 12, pp. 2670–2672.

    CAS  Google Scholar 

  195. Maslov, V.P., Sarsembaeva, A.Z., and Sizov, F.F., Ellipsometric control of quality of polished MgF2 optical ceramics, Semicond. Phys., Quantum Electron. Optoelectron., 2004, vol. 7, no. 2, pp. 199–201.

    Article  CAS  Google Scholar 

  196. Kaplunov, I.A., Rogalin, V.E., and Tsenina, I.S., Fundamental absorption of calcium, magnesium, and lithium fluorides in the range of 8–12 μm, Opt. Spectrosc., 2014, vol. 117, no. 4, pp. 572–574.

    Article  CAS  Google Scholar 

  197. Ikrami, D.D., Ol’khovaya, L.A., and Luginina, A.A., Synthesis of magnesium fluoride for optical ceramics, Izv. Akad. Nauk SSSR, Neorg. Mater., 1977, vol. 13, no. 7, pp. 1238–1241.

    CAS  Google Scholar 

  198. Hieu, N.T., Do, V.T., Thai, N.D., Long, T.D., and Minh, P.V., Enhancing the quality of the characteristic transmittance curve in the infrared region of range 2.5–7 μm of the optical magnesium fluoride (MgF2) ceramic using the hot-pressing technique in a vacuum environment, Adv. Mater. Sci. Eng., 2020, vol. 2020, paper 7258431.https://doi.org/10.1155/2020/7258431

  199. Basiev, T.T., Osiko, V.V., Konyushkin, V.A., Fedorov, P.P., Kuznetsov, S.V., and Doroshenko, M.E., RU Patent 2358045.

  200. Palashov, O.V., Khazanov, E.A., Mukhin, I.B., Smirnov, A.N., Mironov, I.A., Dukel’skii, K.V., Garibin, E.A., Fedorov, P.P., Kuznetsov, S.V., Osiko, V.V., Basiev, T.T., and Gainutdinov, R.V., Optical absorption in CaF2 nanoceramics, Quantum Electronics (Moscow), 2009, vol. 39, no. 10, pp. 943–947. https://doi.org/10.1070/QE2009v039n10ABEH014008

    Article  CAS  Google Scholar 

  201. Palashov, O.V., Khazanov, E.A., Mukhin, I.B., Mironov, I.A., Smirnov, A.N., Dukel’skii, K.V., Fedorov, P.P., Osiko, V.V., and Basiev, T.T., Comparison of the optical parameters of a CaF2 single crystal and optical ceramics, Quantum Electronics (Moscow), 2007, vol. 37, no. 1, pp. 27–28. https://doi.org/10.1070/QE2007v037n01ABEH013511

    Article  CAS  Google Scholar 

  202. Shcheulin, A.S., Ryskin, A.I., Angervaks, A.E., Fedorov, P.P., Osiko, V.V., Demidenko, A.A., Garibin, E.A., Smirnov, A.N., Dukel’skii, K.V., and Mironov, I.A., Additive coloring of CaF2 optical ceramics, Opt. Spectrosc., 2011, vol. 110, no. 4, pp. 604–608. https://doi.org/10.1134/S0030400X11040187

    Article  CAS  Google Scholar 

  203. Basiev, T.T., Doroshenko, M.E., Fedorov, P.P., Konyshkin, V.A., Kouznetsov, S.V., Voronov, V.V., and Osiko, V.V., Preparation and laser oscillation of optical ceramics based on LiF:\({\text{F}}_{2}^{ - }\) color center crystals and CaF2–SrF2–YbF3 crystals, Advanced Solid-State Photonics, Nara, 2008, paper MC 14. https://doi.org/10.1364/ASSP.2008.MC14

  204. Basiev, T.T., Doroshenko, M.E., Fedorov, P.P., Konyushkin, V.A., Kouznetsov, S.V., Nakladov, A.N., and Osiko, V.V., Laser properties of Nd3+ and Yb3+ ions in CaF2 Crystals and Ceramics. Abstracts, 5th Laser Ceramics Symp.: Int. Symp. on Transparent Ceramics for Photonic Applications, Bilbao, 2009.

  205. Doroshenko, M.E., Basiev, T.T., Konyushkin, V.A., Osiko, V.V., Jelinkova, H., and Sulc, J., 15th Int. Conf. on Laser Optics, St. Petersburg, 2012, paper FrR1-42.

  206. Sulc, J., Nemec, M., Doroshenko, M., Jelinkova, H., Basiev, T.T., Konyushkin, V.A., and Osiko, V.V., 5th EPSQEOD Europhoton Conf. on Solid-State, Fibre, and Waveguide Coherent Light Sources, Stockholm, 2012, paper WeP.12, 38.

  207. Sulc, J., Nemec, M., Svejkar, R., Jelinkova, H., Doroshenko, M.E., Fedorov, P.P., and Osiko, V.V., Diode-pumped Er:CaF2 ceramic 2.7 μm tunable laser, Opt. Lett., 2013, vol. 38, no. 17, pp. 3406–3409.https://doi.org/10.1364/OL.38.003406

    Article  CAS  PubMed  Google Scholar 

  208. Ryabochkina, P.A., Lyapin, A.A., Osiko, V.V., Fedorov, P.P., Ushakov, S.N., Kruglova, M.V., Sakharov, N.V., Garibin, E.A., Gusev, P.E., and Krutov, M.A., Structural, spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics, Quantum Electron., 2012, vol. 42, no. 9, pp. 853–857.https://doi.org/10.1070/QE2012v042n09ABEH014919

    Article  CAS  Google Scholar 

  209. Alimov, O.K., Basiev, T.T., Doroshenko, M.E., Fedorov, P.P., Konyushkin, V.A., Kouznetsov, S.V., Nakladov, A.N., Osiko, V.V., and Shlyakhova, O.V., 15th Int. Conf. on Luminescence and Optical Spectroscopy of Condensed Matter, Lyon, 2008, p. 147.

  210. Sulc, J., Doroshenko, M.E., Jelinkova, H., Basiev, T.T., Konyushkin, V.A., and Osiko, V.V., Tunability of laser based on Yb-doped hot-pressed CaF2 ceramics, SPIE Photonics Europe, Brussels, 2012, vol. 8433, paper 84331P.

  211. Basiev, T.T., Konyushkin, V.A., Konyushkin, D.V., Doroshenko, M.E., Huber, G., Reichert, F., Hansen, N.-O., and Fechner, M., First ceramic laser in the visible spectral range, Opt. Mater. Express, 2011, vol. 1, no. 8, pp. 1511–1514.https://doi.org/10.1364/OME.1.001511

    Article  CAS  Google Scholar 

  212. Basiev, T.T., Doroshenko, M.E., Konyushkin, V.A., and Osiko, V.V., SrF2:Nd3+ laser fluoride ceramics, Opt. Lett., 2010, vol. 35, no. 23, pp. 4009–4011.https://doi.org/10.1364/OL.35.004009

    Article  CAS  PubMed  Google Scholar 

  213. Sulc, J., Nemec, M., Doroshenko, M., Jelinkova, H., Basiev, T.T., Konyushkin, V.A., and Osiko, V.V., 5th EPSQEOD Europhoton Conf. on Solid-State, Fibre, and Waveguide Coherent Light Sources, Stockholm, 2012, paper WeP.20, 38.

  214. Lyapin, A.A., Ryabochkina, P.A., Ushakov, S.N., and Fedorov, P.P., Visualiser of two-micron laser radiation based on Ho:CaF2 crystals, Quantum Electron., 2014, vol. 44, no. 6, pp. 602–605.https://doi.org/10.1070/QE2014v044n06ABEH015423

    Article  CAS  Google Scholar 

  215. Sulc, J., Nemec, M., Jelinkova, H., Doroshenko, M.E., Fedorov, P.P., and Osiko, V.V., Diode-pumped tunable lasers based on Tm:CaF2 and Tm:Ho:CaF2 ceramics, Proc. SPIE (Solid State Lasers XXIII: Technology and Devices), San Francisco, 2014, vol. 8959, paper 895925.

  216. Doroshenko, M.E., Papashvili, A.G., Martynova, K.A., Konyushkin, V.A., Nakladov, A.N., and Osiko, V.V., Spectroscopic properties of long-lifetime Tm3+ optical centers in Ca–Sr–Ba fluorides in the form of single crystals and ceramics at the 1G43H5 magnetic dipole allowed transition, Laser Phys. Lett., 2016, vol. 14, no. 2, paper 025701.https://doi.org/10.1088/1612-202X/aa4fcc

  217. Popov, P.A., Fedorov, P.P., Kuznetsov, S.V., Konyushkin, V.A., Osiko, V.V., and Basiev, T.T., Thermal conductivity of single crystals of Ca1–xYbxF2+x solid solutions, Dokl. Phys., 2008, vol. 53, no. 4, pp. 198–200. https://doi.org/10.1134/S102833580804006X

    Article  CAS  Google Scholar 

  218. Popov, P.A., Fedorov, P.P., Kuznetsov, S.V., Konyushkin, V.A., Osiko, V.V., and Basiev, T.T., Thermal conductivity of single crystals of Ba1–xYbxF2+x solid solution, Dokl. Phys., 2008, vol. 53, no. 7, pp. 353–355. https://doi.org/10.1134/S1028335808070045

    Article  CAS  Google Scholar 

  219. Popov, P.A., Fedorov, P.P., Konyushkin, V.A., Nakladov, A.N., Kuznetsov, S.V., Osiko, V.V., and Basiev, T.T., Thermal conductivity of single crystals of Sr1–xYbxF2+x solid solution, Dokl. Phys., 2008, vol. 53, no. 8, pp. 413–415. https://doi.org/10.1134/S1028335808080016

    Article  CAS  Google Scholar 

  220. Warf, J.C., Cline, W.C., and Tevebaugh, R.D., Pyrohydrolysis in determination of fluoride and other halides, Anal. Chem., 1954, vol. 26, no. 2, pp. 342–346.https://doi.org/10.1021/ac60086a019

    Article  CAS  Google Scholar 

  221. Banks, C.V., Burke, K.E., and O’Laughlin, J.W., The determination of fluorine in rare-earth fluorides by high temperature hydrolysis, Anal. Chim. Acta, 1958, vol. 19, pp. 230–243.https://doi.org/10.1016/S0003-2670(00)88149-0

    Article  Google Scholar 

  222. Gorbulev, V.A., Fedorov, P.P., and Sobolev, B.P., Interaction of oxyfluorides of rare earth elements with fluorides having the fluorite structure, J. Less-Common Met., 1980, vol. 76, nos. 1–2, pp. 55–62.https://doi.org/10.1016/0022-5088(80)90009-0

    Article  CAS  Google Scholar 

  223. Batygov, S.Kh., Bolyasnikova, L.S., Garibin, A.E., Demidenko, V.A., Doroshenko, M.E., Dukel’skii, K.V., Luginina, A.A., Mironov, I.A., Osiko, V.V., and Fedorov, P.P., BaF2:Ce3+ scintillation ceramics, Dokl. Phys., 2008, vol. 53, no. 9, pp. 485–488. https://doi.org/10.1134/S102833580809005X

    Article  CAS  Google Scholar 

  224. Olkhovaya, L.A., Fedorov, P.P., Ikrami, D.D., and Sobolev, B.P., Phase diagrams of MgF2–(Y,Ln)F3 systems, J. Therm. Anal., 1979, vol. 15, pp. 355–360.https://doi.org/10.1007/BF01903660

    Article  CAS  Google Scholar 

  225. Lisitsyn, V.M., Musakhanov, D.A., Vaganov, V.A., Tulegenova, A.T., Golkovskii, M.G., Lisitsyna, L.A., Dauletbekova, A.K., and Karipbayev, Z.T., MgF2-based luminescing ceramics, Russ. Phys. J., 2019, vol. 61, no. 10, pp. 1908–1919.https://doi.org/10.1007/s11182-019-01617-y

    Article  CAS  Google Scholar 

  226. Ikrami, D.D., Fedorov, P.P., Luginina, A.A., and Ol’khovaya, L.A., MgF2–MnF2, CaF2–MnF2, and SrF2–MnF2 systems, Zh. Neorg. Khim., 1985, vol. 30, no. 5, pp. 1261–1265.

    CAS  Google Scholar 

  227. Batenkov, O.I., Yurevich, V.I., Garibin, E.A., Reiterov, V.M., Gusev, P.E., Krutov, M.A., Fedorov, P.P., and Veshchikov, A.S., Study of response of scintillation detector based on BaF2 crystals and nanoceramics, Phys. Part. Nucl. Lett., 2016, vol. 13, no. 1, pp. 104–111. https://doi.org/10.1134/S1547477116010027

    Article  CAS  Google Scholar 

  228. Shahbazi, H., Tataei, M., Enayati, M.H., Shafeiey, A., and Malekabadi, M.A., Structure–transmittance relationship in transparent ceramics, J. Alloys Compd., 2019, vol. 785, pp. 260–285.https://doi.org/10.1016/j.jallcom.2019.01.124

    Article  CAS  Google Scholar 

  229. Kuroda, Y. and Morimoto, T., Interaction of water with the surface of SrF2. 1. Strongly adsorbed water on strontium fluoride, Langmuir, 1988, vol. 4, no. 2, pp. 425–429.https://doi.org/10.1021/la00080a029

    Article  CAS  Google Scholar 

  230. Kuroda, Y. and Morimoto, T., Interaction of water with the surface of SrF2. 2. Physisorption of water on water strongly adsorbed on strontium fluoride, Langmuir, 1988, vol. 4, no. 2, pp. 430–432.https://doi.org/10.1021/la00080a030

    Article  CAS  Google Scholar 

  231. Kuroda, Y., Yoshikawa, Y., Yokota, Y., and Morimoto, T., Effect of changing exposed surfaces of strontium fluoride crystal on the two-dimensional condensation of water and krypton, Langmuir, 1990, vol. 6, no. 10, pp. 1544–1548.https://doi.org/10.1021/la00100a003

    Article  CAS  Google Scholar 

  232. Nikova, M.S., Tarala, V.A., Malyavin, F.F., Vakalov, D.S., Lapin, V.A., Kuleshov, D.S., Kravtsov, A.A., Chikulina, I.S., Tarala, L.V., Evtushenko, E.A., Medyanik, E.V., Krandievsky, S.O., Bogach, A.V., and Kuznetsov, S.V., The scandium impact on the sintering of YSAG:Yb ceramics with high optical transmittance, Ceram. Int., 2021, vol. 47, pp. 1772–1784.https://doi.org/10.1016/j.ceramint.2020.09.003

    Article  CAS  Google Scholar 

  233. Fedorov, P.P. and Sobolev, B.P., Concentration dependence of unit-cell parameters of phases M1–xRxF2+x with the fluorite structure, Kristallografiya, 1992, vol. 37, no. 5, pp. 1210–1219.

    CAS  Google Scholar 

  234. Bloembergen, N., Solid state infrared quantum counters, Phys. Rev. Lett., 1959, vol. 2, no. 3, pp. 84–85.https://doi.org/10.1103/PhysRevLett.2.84

    Article  CAS  Google Scholar 

  235. Ovsyankin, V.V. and Feofilov, P.P., Mechanism of summation of electronic excitation in activated crystals, JETP Lett., 1966, vol. 3, pp. 494–497.

    CAS  Google Scholar 

  236. Auzel, F., Upconversion and anti-Stokes process with f and d ions in solids, Chem. Rev., 2004, vol. 104, no. 1, pp. 139–174.https://doi.org/10.1021/cr020357g

    Article  CAS  PubMed  Google Scholar 

  237. Kuznetsov, S., Ermakova, Yu., Voronov, V., Fedorov, P., Busko, D., Howard, I.A., Richards, B.S., and Turshatov, A., Up-conversion quantum yields of SrF2:Yb3+,Er3+ submicron particles prepared by precipitation from aqueous solution, J. Mater. Chem. C, 2018, vol. 6, no. 3, pp. 598–604.https://doi.org/10.1039/C7TC04913G

    Article  CAS  Google Scholar 

  238. Reig, D.S., Grauel, B., Konyushkin, V.A., Nakladov, A.N., Fedorov, P.P., Busko, D., Howard, I.A., Richards, B.S., Resch-Genger, U., Kuznetsov, S., Turshatov, A., and Wurth, C., Upconversion properties of SrF2:Yb3+,Er3+ single crystals, J. Mater. Chem. C, 2020, vol. 8, no. 12, pp. 4093–4101.https://doi.org/10.1039/c9tc06591a

    Article  CAS  Google Scholar 

  239. Brites, D.S., Kuznetsov, S.V., Konyushkin, V.A., Nakladov, A.N., Fedorov, P.P., and Carlos, L.D., Simultaneous measurement of the emission quantum yield and local temperature: the illustrative example of SrF2:Yb3+/Er3+ single crystals, Eur. J. Inorg. Chem., 2020, vol. 2020, no. 17, pp. 1555–1561.https://doi.org/10.1002/ejic.202000113

    Article  CAS  Google Scholar 

  240. Brites, C.D.S., Balabhadra, S., and Carlos, L.D., Lanthanide-based thermometers: at the cutting-edge of luminescence thermometry, Adv. Opt. Mater., 2019, vol. 7, no. 5, paper 1801239.https://doi.org/10.1002/adom.201801239

  241. Jaque, D. and Vetrone, F., Luminescence nanothermometry, Nanoscale, 2012, vol. 4, no. 15, pp. 4301–4326.https://doi.org/10.1039/C2NR30764B

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.V. Osiko, T.T. Basiev, and E.A. Garibin for initiating the research on laser ceramics at the Prokhorov General Physics Institute of the Russian Academy of Sciences.

Funding

This work was supported by the Russian Foundation for Basic Research, scientific project no. 19-13-50423.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, S.V., Alexandrov, A.A. & Fedorov, P.P. Optical Fluoride Nanoceramics. Inorg Mater 57, 555–578 (2021). https://doi.org/10.1134/S0020168521060078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521060078

Keywords:

Navigation