Skip to main content
Log in

Effect of nonlinearity on interaction between the vortices in the f-plane shallow water system

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Based on the equations of the f-plane shallow water model, a new set of nonlinear models for the interaction of the vortices in the f-plane shallow water system are established by using perturbation expansion and multi-scale method. These models have different nonlinear characteristics. The asymptotic analytical solution(vortex solution) is obtained by using Newton iteration method and quasi-spectral method. In the simulation process, different from the previous studies, the initial values were constructed by using the asymptotic analytical solution for the first time to simulate the interaction process of the vortices. The result shows that the single vortex maintains a stable state for a long time under fixed parameters. The approximate critical distances of the binary vortices are different under different nonlinear effects. When the distance between binary vortices is less than, equal to, or greater than the critical distance, the binary vortices merge, rotate or separate. In addition, when the vortices interact, the critical distance of mKdV-type vortex is slightly larger than that of KdV-type vortex. This indicates that the nonlinear effect increases the energy loss rate during the interaction of the vortices and weakens the intensity of the interaction until the vortices are separated and do not affect each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fujiwhara, S.: On the growth and decay of vortical systems. Q. J. R. Meteorol. Soc. 49, 75–104 (1923)

    Article  Google Scholar 

  2. Saffman, P.G.: Vortex Dynamics. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  3. Ferrari, R., Wunsch, C.: Ocean circulation kinetic energy: reservoirs, sources and sinks. Annu. Rev. Fluid Mech. 41, 253–82 (2009)

    Article  Google Scholar 

  4. Sugimoto, N., Plougonven, R.: Generation and backreaction of spontaneously emitted inertia-gravity waves. Geophys. Res. Lett. 43, 3519–3525 (2016)

    Article  Google Scholar 

  5. Dong, K.Q., Neumann, C.J.: On the relative motion of binary tropical cyclones. Mon. Weather Rev. 111(5), 945–953 (1983)

    Article  Google Scholar 

  6. Dritschel, D.G.: A general theory for two-dimensional vortex interactions. J. Fluid Mech. 293, 269–303 (1995)

    Article  MathSciNet  Google Scholar 

  7. Mcwilliams, J.C.: The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech. 146(1), 21–43 (1984)

    Article  Google Scholar 

  8. Flierl, G.R., Mcwilliams, J.C.: On the sampling requirements for measuring moments of eddy variability. J. Mar. Res. 35(4), 797–820 (1977)

    Google Scholar 

  9. Holland, W.: The role of mesoscale eddies in the general circulation of the ocean numerical experiments using a wind-driven quasi-geostrophic model. J. Phys. Oceanogr. 8(3), 363–392 (1978)

    Article  Google Scholar 

  10. Mcwilliams, J.C., Flierl, G.R.: On the evolution of isolated non-linear vortices. J. Phys. Oceanogr. 9(6), 1155–1182 (1979)

    Article  Google Scholar 

  11. Hu, D.X., Ding, Z.X., Xiong, Q.C.: Preliminary analysis of a cyclonic vortex in the north east China Sea. Chin. Sci. Bull. (in Chinese) 1, 15–23 (1980)

    Google Scholar 

  12. Chelton, D.B., Schelax, M.G., Samelson, R.M.: Global observations of nonlinear mesocale eddies. Progr. Oceanogr. 91(2), 167–216 (2011)

    Article  Google Scholar 

  13. Wang, D.S., Song, S.W., Xiong, B., et al.: Quantized vortices in a rotating Bose–Einstein condensate with spatiotemporally modulated interaction. Phys. Rev. A 84(5), 053607 (2011)

    Article  Google Scholar 

  14. Clark, A.J., Gallus, W.A., Xue, M., et al.: Convection-allowing and convection-parameterizing ensemble forecasts of a mesoscale convective vortex and associated severe weather environment. Weather Forecast. 25(4), 1052–1081 (2010)

    Article  Google Scholar 

  15. Korotaev, G.K., Dorofeev, V.L.: Interaction of an ensemble of vortexes in the \(\beta \)-plane. Phys. Oceanogr. 10(4), 297–304 (2000)

    Article  Google Scholar 

  16. Rasmussen, J.J., Nielsen, A.H., Naulin, V.: Dynamics of vortex interactions in two-dimensional flows. Physica Scripta 2002(1), 29–33 (2001)

    Article  Google Scholar 

  17. Jia, M., Gao, Y., Huang, F., et al.: Vortices and vortex sources of multiple vortex interaction systems. Nonlinear Anal. Real World Appl. 13(5), 2079–2095 (2012)

    Article  MathSciNet  Google Scholar 

  18. Luo, D.H., Lu, Y.: Evolution of solitary eddies over a Gaussian topography and their interaction. Acta Oceanologica Sinica 21(6), 1–8 (1999). in Chinese

    Article  Google Scholar 

  19. Zhang, R.G., Yang, L.G.: Nonlinear Rossby waves in zonally varying flow under generalized beta approximation. Dyn. Atmos. Oceans 85, 16–27 (2019)

    Article  Google Scholar 

  20. Luo, D.H., Lu, Y.: The evolution of long-lived anticyclonic vortices over topography in an ocean and their merging. Oceanologia et Limnologia Sinica 31(4), 363–369 (2000)

    Google Scholar 

  21. Seadawy, A.R., Iqbal, M., Lu, D.C.: Nonlinear wave solutions of the Kudryashov–Sinelshchikov dynamical equation in mixtures liquid–gas bubbles under the consideration of heat transfer and viscosity. J. Taibah Univ. Sci. 13, 1060–1072 (2019)

    Article  Google Scholar 

  22. Lu, D.C., Seadawy, A.R., Ali, A.: Dispersive traveling wave solutions of the equal-width and modified equal-width equations via mathematical methods and its applications. Results Phys. 9, 313–320 (2018)

    Article  Google Scholar 

  23. Ma, W.X.: Generalized bilinear differential equation. Stud. Nonlinear Sci. 2(4), 140–144 (2011)

    Google Scholar 

  24. Ahmad, H., Seadawy, A.R., Khan, T.A., et al.: Analytic approximate solutions for some nonlinear parabolic dynamical wave equations. J. Taibah Univ. Sci. 14, 346–358 (2020)

    Article  Google Scholar 

  25. Berestov, A.L.: Solitary Rossby waves. Izvestiya Acadey Science USSR, Atmosph Oceanic Physical 15, 443–447 (1979)

    MathSciNet  Google Scholar 

  26. Flierl, G.R.: Isolated eddy models in geophysics. Annu. Rev. Fluid Mech. 19, 493–530 (1987)

    Article  Google Scholar 

  27. Ali, A., Seadawy, A.R., Lu, D.C.: Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz–Kaup–Newell–Segur water wave dynamical equation via two methods and its applications. Open Phys. 16, 219–226 (2018)

    Article  Google Scholar 

  28. Iqbal, M., Seadawy, A.R., Khalil, O.H., et al.: Propagation of long internal waves in density stratified ocean for the (2+1)-dimensional nonlinear Nizhnik–Novikov–Vesselov dynamical equation. Results Phys. 16, 102838 (2020)

    Article  Google Scholar 

  29. Zhang, R.G., Liu, Q.S., Yang, L.G., et al.: Nonlinear planetary-synoptic wave interaction under generalized beta effect and its solutions. Chaos Solitons Fractals 122, 270–280 (2019)

    Article  MathSciNet  Google Scholar 

  30. Seadawy, A.R., El-Rashidy, K.: Dispersive solitary wave solutions of Kadomtsev–Petviashvili and modified Kadomtsev–Petviashvili dynamical equations in unmagnetized dust plasma. Results Phys. 8, 1216–1222 (2018)

    Article  Google Scholar 

  31. Farah, N., Seadawy, A.R., Ahmad, S., et al.: Interaction properties of soliton molecules and Painleve analysis for nano bioelectronics transmission model. Opt. Quantum Electron. 52(7), 329 (2020)

    Article  Google Scholar 

  32. Arshad, M., Seadawy, A.R., Lu, D.C.: Modulation stability and optical soliton solutions of nonlinear Schrodinger equation with higher order dispersion and nonlinear terms and its applications. Superlattices Microstruct. 112, 422–434 (2017)

    Article  Google Scholar 

  33. Rajendran, V.P., Constantinescu, S.G., Patel, V.C.: Experimental validation of numerical model pump-intake bays. J. Hydraul. Eng. 125(11), 1119–1125 (1999)

    Article  Google Scholar 

  34. Folz, P.J.R., Nomura, K.K.: Interaction of two equal corotating viscous vortices in the presence of background shear. Fluid Dyn. Res. 46(3), 031423 (2014)

    Article  MathSciNet  Google Scholar 

  35. Ramani, R., Shkoller, S.: A multiscale model for Rayleigh–Taylor and Richtmyer–Meshkov in stabilities. J. Comput. Phys. 2019, 109177 (2019)

    MATH  Google Scholar 

  36. Sugimoto, N., et al.: Balance regimes for the stability of a jet in an f-plane shallow water system. Fluid Dyn. Res. 39(5), 353–377 (2007)

    Article  MathSciNet  Google Scholar 

  37. Chen, J., Liu, S.K.: A barotropic quasi-geostrophic model with large-scale orography, friction and heating. Acta Scientiarum Naturalium: Universitatis Pekinensis 35(1), 74–80 (1999)

    MathSciNet  MATH  Google Scholar 

  38. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, pp. 496–535. Courier Corporation (2000)

  39. Boyd, J.P.: Monopolar and dipolar vortex solitons in two space dimensions. Wave Motion 13(3), 223–241 (1991)

    Article  MathSciNet  Google Scholar 

  40. Tan, B., Boyd, J.P.: Dynamics of the Flierl–Petviashvili monopoles in a barotropic model with topographic forcing. Wave Motion 26(3), 239–251 (1997)

    Article  MathSciNet  Google Scholar 

  41. Sugimoto, N., Ishioka, K., Kobayashi, H., et al.: Cyclone-anticyclone asymmetry in gravity wave radiation from a co-rotating vortex pair in rotating shallow water. J. Fluid Mech. 772, 80–106 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11975143, 11672270), the Nature Science Foundation of Shandong Province of China (No. ZR2018MA017), the Open Fund of State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography (No. QNHX1817), the Taishan Scholars Program of Shandong Province, China (No. ts20190936), the Shandong University of Science and Technology Research Fund, China (No. 2015TDJH102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

  • Iterative approximation of the MATLAB code:

  • clc,clear

  • syms r x y a1 a2 a3 a4 temp;

  • \(L=1\); (Part is to find the coefficient of the initial iteration solution u. The main idea is to assume the form of u first and then substitute it into Equation to find suitable a1 and a2)

  • \(T_1=chebshev(1,x);\) (Chebyshev polynomials of first order)

  • \(T_2=chebshev(2,x);\)

  • \(T_3=chebshev(3,x);\)

  • \(T_5=chebshev(5,x);\)

  • \(T_4=chebshev(4,x);\)

  • \(T_6=chebshev(6,x);\)

  • \(T_8=chebshev(8,x);\)

  • \(T_10=chebshev(10,x);\)

  • \(temp1=temp./sqrt(temp.^2+L.^2)\);

  • \(T_1=subs(T_1,x,temp1);\) (First-order Chebyshev polynomials of \(Tb_N\) form)

  • \(T_2=subs(T_2,x,temp1);\)

  • \(T_3=subs(T_3,x,temp1);\)

  • \(T_4=subs(T_4,x,temp1);\)

  • \(T_5=subs(T_5,x,temp1);\)

  • \(T_6=subs(T_6,x,temp1);\)

  • \(T_8=subs(T_8,x,temp1);\)

  • \(T_10=subs(T_10,x,temp1);\)

  • \(T_1=subs(T_1,temp,r./2);\)

  • \(T_2=subs(T_2,temp,r./2);\)

  • \(T_3=subs(T_3,temp,r./2);\)

  • \(T_4=subs(T_4,temp,r./2);\)

  • \(T_5=subs(T_5,temp,r./2);\)

  • \(T_6=subs(T_6,temp,r./2);\)

  • \(T_8=subs(T_8,temp,r./2);\)

  • \(T_10=subs(T_10,temp,r./2);\)

  • tic

  • syms r x y w;

  • \(L=1\); (The transformation value L in the definition of \(TB_{-}N\))

  • \(a1=0.06654;\)

  • \(a2=-0.02887;\)

  • \(a3=0.005687;\)

  • \(a4=0;\)

  • \(a5=0;\)

  • \(a_{-}1_{-}2=[a1;a2;a3;a4;a5];\) (The coefficients of pseudospectral method are a1 and a2)

  • \(w_{-}temp=[(T_{-}2-1),(T_{-}4-1),(T_{-}6-1),(T_{-}8-1),(T_{-}10-1)]*a_{-}1_{-}2;\)

  • \(res=1;\)

  • \(n=100;\)

  • \(k=0;\)

  • \(x_{-}=-10:0.1:10;\)

  • \(y_{-}=x_{-};\)

  • \(len=length(x_{-});\)

  • \(d=1;\) (while \(k<=n, res>=0.0001, d~=0;\) When the number of iterations is greater than the maximum number of iterations or the error between the two solutions is zero, the iteration is terminated)

  • \(w0=w_{-}temp;\)

  • \(N=3;\) (The number of bases used by the near d function)

  • \(basis_set=sym(zeros(1,N))\); (The \(i-th\) element in \(basis_{-}set\) is the \(basis_{-}set\) function)

  • for \(i=1:N\)

  • \(basis_{-}set(i)=chebshev(2*i,r)-1;\)

  • end

  • \(basis_{-}set=subs(basis_{-}set,r,r./(sqrt(L.^2+r.^2)));\)

  • \(i=1:2*N-1;\)

  • \(xi_{-}str=cos((i.*pi)./(2.*N));\)

  • \(xi=sqrt((xi_{-}str.^2.*L.^2)./(1-xi_{-}str.^2));\)

  • \(xi_{-}r=2.*xi;\)

  • \(xi_{-}r=[xi_{-}r(1:ceil(N-1/2)),-1.*xi_{-}r(ceil(N-1/2)+1:2*N-1)];\)

  • \(D=xi_{-}r(1:N);\)

  • \(B=zeros(N);\)

  • \(C=zeros(N,1);\)

  • for

  • \(i=1:N\)

  • for

  • \(j=1:N\)

  • \(temp_{-}L_{-}N=subs(L_{-}N,r,D(i));\)

  • \(temp_{-}f=subs(f,r,D(i));\)

  • \(B(i,j)=double(temp_{-}L_{-}N);\)

  • \(C(i)=double(temp_{-}f);\)

  • end

  • end

  • \(A=\frac{B}{C};\)

  • \(A=sym(A);\)

  • \(d=basis_{-}set*A;\)

  • \(w1=w0+d;\)

  • \(k=k+1;\)

  • \(res_{-}f=simplify((diff(w1,r,2)+diff(w1,r,1)./r-w1-w1.^3));\)

  • \(d_{-}temp=subs(res_{-}f,r,sqrt(x.^2+y.^2));\)

  • \(d_{-}temp1=matlabFunction(d_{-}temp);\)

  • \(d_{-}temp2=max(max(abs(d_{-}temp1(x_{-},y_{-}))));\)

  • \(w_{-}temp=w1;\)

  • end

  • \(w1=simplify(w1);\)

  • pretty(w1); 

  • \(w_{-}temp1=subs(w1,r,sqrt(x.^2+y.^2));\)

  • \(w_{-}temp2=matlabFunction(w_{-}temp1);\)

  • \(w_{-}=w_{-}temp2(x_{-},y_{-});\)

  • figure;

  • \(mesh(x_{-},y_{-},w_{-});\)

  • toc

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L., Zhang, H., He, H. et al. Effect of nonlinearity on interaction between the vortices in the f-plane shallow water system. Z. Angew. Math. Phys. 72, 144 (2021). https://doi.org/10.1007/s00033-021-01576-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01576-w

Keywords

Mathematics Subject Classification

Navigation