Skip to main content
Log in

Tutte polynomials of vertex-weighted graphs and group cohomology

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct a generalization of the Tutte polynomial for vertex-weighted graphs for which the coefficients of the “deletion–contraction” relation depend nontrivially on the vertex weights. We show that the corresponding relation on the coefficients coincides with the two-cocycle relation in the group cohomology. We obtain a representation of a new invariant by summing over subgraphs and establish its connection with four-invariants of graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. J. A. Ellis-Monaghan and C. Merino, “Graph polynomials and their applications I: The Tutte polynomial,” in: Structural Analysis of Complex Networks (M. Dehmer, ed.), Birkhäuser, Boston (2011), pp. 219–255.

    Article  MathSciNet  Google Scholar 

  2. T. Zaslavsky, “Strong Tutte functions of matroids and graphs,” Trans. Amer. Math. Soc., 334, 317–347 (1992).

    Article  MathSciNet  Google Scholar 

  3. M. Kochol, “Modifications of Tutte–Grothendieck invariants and Tutte polynomials,” AKCE Internat. J. Graphs Comb., 17, 70–73 (2020).

    Article  MathSciNet  Google Scholar 

  4. A. D. Sokal, “The multivariate Tutte polynomial (alias Potts model) for graphs and matroids,” in: Surveys in Combinatorics 2005 (B. S. Webb, ed.), Cambridge Univ. Press, Cambridge (2005), pp. 173–226.

    Article  MathSciNet  Google Scholar 

  5. B. Bychkov, A. Kazakov, and D. Talalaev, “Multivariate polynomial graph invariants: Dualities and critical properties,” arXiv:2005.10288v2 [math-ph] (2005).

  6. L. Beaudin, J. Ellis-Monaghan, G. Pangborn, and R. Shrock, “A little statistical mechanics for the graph theorist,” Discrete Math., 310, 2037–2053 (2010).

    Article  MathSciNet  Google Scholar 

  7. S. C. Chang and R. Shrock, “Zeros of Jones polynomials for families of knots and links,” Phys. A, 301, 196–218 (2001).

    Article  MathSciNet  Google Scholar 

  8. F. Y. Wu, “The Potts model,” Rev. Modern Phys., 54, 235–268 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  9. V. Gorbounov and D. Talalaev, “Electrical varieties as vertex integrable statistical models,” J. Phys. A: Math. Theor., 53, 454001 (2020).

    Article  MathSciNet  Google Scholar 

  10. A. Berenstein, S. Fomin, and A. Zelevinsky, “Parametrizations of canonical bases and totally positive matrices,” Adv. Math., 122, 49–149 (1996).

    Article  MathSciNet  Google Scholar 

  11. A. Berenstein and A. Zelevinsky, “Quantum cluster algebras,” Adv. Math., 195, 405–455 (2005).

    Article  MathSciNet  Google Scholar 

  12. P. Galashin and P. Pylyavskyy, “Ising model and the positive orthogonal Grassmannian,” Duke Math. J., 169, 1877–1942 (2020).

    Article  MathSciNet  Google Scholar 

  13. M. Khovanov, “A categorification of the Jones polynomial,” Duke Math. J., 101, 359–426 (2000).

    Article  MathSciNet  Google Scholar 

  14. L. Helme-Guizon and Y. Rong, “A categorification for the chromatic polynomial,” Algebr. Geom. Topol., 5, 1365–1388 (2005).

    Article  MathSciNet  Google Scholar 

  15. D. Bar-Natan, “On Khovanov’s categorification of the Jones polynomial,” Algebr. Geom. Topol., 2, 337–370 (2002); arXiv:math.QA/0201043v3 (2002).

    Article  MathSciNet  Google Scholar 

  16. T. Krajewski, I. Moffatt, and A. Tanasa, “Hopf algebras and Tutte polynomials,” Adv. Appl. Math., 95, 271–330 (2018).

    Article  MathSciNet  Google Scholar 

  17. I. Averbouch, B. Godlin, and J. A. Makowsky, “A most general edge elimination polynomial,” in: Graph-Theoretic Concepts in Computer Science (Lect. Notes Computer Sci., Vol. 5344, H. Broersma, T. Erlebach, T. Friedetzky, and D. Paulusma, eds.), Springer, Berlin (2008), pp. 31–42.

    Article  MathSciNet  Google Scholar 

  18. R. P. Stanley, “A symmetric function generalization of the chromatic polynomial of a graph,” Adv. Math., 111, 166–194 (1995).

    Article  MathSciNet  Google Scholar 

  19. S. D. Noble and D. J. A. Welsh, “A weighted graph polynomial from chromatic invariants of knots,” Ann. Inst. Fourier (Grenoble), 49, 1057–1087 (1999).

    Article  MathSciNet  Google Scholar 

  20. S. Chmutov, S. Duzhin, and S. Lando, “Vassiliev knot invariants: III. Forest algebra and weighted graphs,” in: Singularities and Bifurcations (Adv. Sov. Math., Vol. 21, V. I. Arnold, ed.), Amer. Math. Soc., Providence, R. I. (1994), pp. 135–145.

    Article  MathSciNet  Google Scholar 

  21. S. Chmutov, M. Kazarian, and S. Lando, “Polynomial graph invariants and the KP hierarchy,” Selecta Math., n.s., 26, 34 (2020).

    Article  MathSciNet  Google Scholar 

  22. B. S. Bychkov and A. V. Mikhailov, “Polynomial graph invariants and linear hierarchies,” Russian Math. Surveys, 74, 366–368 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  23. J. A. Ellis-Monaghan and I. Moffatt, “The Tutte–Potts connection in the presence of an external magnetic field,” Adv. Appl. Math., 47, 772–782 (2011).

    Article  MathSciNet  Google Scholar 

  24. M. Stykow, “Introduction to group cohomology,” Bachelor’s thesis, Dept. Math. Sci., Monash Univ., Melbourne, Australia (2008).

  25. J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford, and M. Saito, “Quandle cohomology and state-sum invariants of knotted curves and surfaces,” Trans. Amer. Math. Soc., 355, 3947–3989 (2003).

    Article  MathSciNet  Google Scholar 

  26. V. Ruiz Herrero, “Extensions of groups,” Bachelor’s thesis, Universitat Politècnica de Catalunya, Barcelona (2018).

  27. S. K. Lando and A. K. Zvonkin, Graphs on Surfaces and their Applications (Encycl. Math. Sci., Vol. 141), Springer, Berlin (2013).

    MATH  Google Scholar 

Download references

Funding

This research was supported by a grant from the Russian Science Foundation (Project No. 20-71-10110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Bychkov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 207, pp. 226-236 https://doi.org/10.4213/tmf10034.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bychkov, B.S., Kazakov, A.A. & Talalaev, D.V. Tutte polynomials of vertex-weighted graphs and group cohomology. Theor Math Phys 207, 594–603 (2021). https://doi.org/10.1134/S0040577921050056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921050056

Keywords

Navigation