Skip to main content
Log in

Integrable extensions of the Adler map via Grassmann algebras

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study certain extensions of the Adler map on Grassmann algebras \(\Gamma(n)\) of order \(n\). We consider a known Grassmann-extended Adler map and under the assumption that \(n=1\), obtain a commutative extension of the Adler map in six dimensions. We show that the map satisfies the Yang–Baxter equation, admits three invariants, and is Liouville integrable. We solve the map explicitly by regarding it as a discrete dynamical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Objects used in this paper arise in the study of spectral problems in soliton theory.

References

  1. V. M. Buchstaber, “The Yang–Baxter transformation,” Russian Math. Surveys, 53, 1343–1345 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  2. E. K. Sklyanin, “Classical limits of the \(SU(2)\)-invariant solutions of the Yang–Baxter equation,” J. Math. Sci., 40, 93–107 (1988).

    Article  MathSciNet  Google Scholar 

  3. V. G. Drinfeld, “On some unsolved problems in quantum group theory,” in: Quantum Groups (Lect. Notes Math., Vol. 1510, P. P. Kulish, ed.), Springer, Berlin (2006), pp. 1–8.

    Google Scholar 

  4. T. E. Kouloukas and V. G. Papageorgiou, “Entwining Yang–Baxter maps and integrable lattices,” in: Algebra, Geometry, and Mathematical Physics (Banach Center Publ., Vol. 93, V. Abramov, J. Fuchs, E. Paal, A. Stolin, A. Tralle, and P. Urbanski, eds.), Inst. Math., Polish Acad. Sci., Warsaw (2011), pp. 163–175.

    MathSciNet  MATH  Google Scholar 

  5. T. E. Kouloukas and V. G. Papageorgiou, “Yang–Baxter maps with first-degree-polynomial \(2{\times}2\) Lax matrices,” J. Phys. A: Math. Theor., 42, 404012 (2009).

    Article  MathSciNet  Google Scholar 

  6. Yu. B. Suris and A. P. Veselov, “Lax matrices for Yang–Baxter maps,” J. Nonlinear Math. Phys., 10 Suppl. 2, 223–230 (2003).

    Article  MathSciNet  Google Scholar 

  7. V. E. Adler, A. I. Bobenko, and Yu. B. Suris, “Geometry of Yang–Baxter maps: Pencils of conics and quadrirational mappings,” Commun. Anal. Geom., 12, 967–1007 (2004).

    Article  MathSciNet  Google Scholar 

  8. V. G. Papageorgiou, A. G. Tongas, and A. P. Veselov, “Yang–Baxter maps and symmetries of integrable equations on quad-graphs,” J. Math. Phys., 47, 083502 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Konstantinou-Rizos and A. V. Mikhailov, “Darboux transformations, finite reduction groups, and related Yang–Baxter maps,” J. Phys. A: Math. Theor., 46, 425201 (2013).

    Article  MathSciNet  Google Scholar 

  10. S. Konstantinou-Rizos and G. Papamikos, “Entwining Yang–Baxter maps related to NLS type equations,” J. Phys. A: Math. Theor., 52, 485201 (2019).

    Article  MathSciNet  Google Scholar 

  11. A. V. Mikhailov, G. Papamikos, and J. P. Wang, “Darboux transformation for the vector sine-Gordon equation and integrable equations on a sphere,” Lett. Math. Phys., 106, 973–996 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  12. V. Caudrelier, N. Crampé, and Q. C. Zhang, “Set-theoretical reflection equation: Classification of reflection maps,” J. Phys. A: Math. Theor., 46, 095203 (2013); arXiv:1210.5107v2 [math-ph] (2012).

    Article  ADS  MathSciNet  Google Scholar 

  13. V. Caudrelier and Q. C. Zhang, “Yang–Baxter and reflection maps from vector solitons with a boundary,” Nonlinearity, 27, 1081–1103 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Doikou and A. Smoktunowicz, “From braces to Hecke algebras & quantum groups,” arXiv:1912.03091v2 [math-ph] (2019).

  15. W. Rump, “Modules over braces,” Algebra Discrete Math., 2, 127–137 (2006).

    MathSciNet  MATH  Google Scholar 

  16. G. G. Grahovski and A. V. Mikhailov, “Integrable discretisations for a class of nonlinear Schrödinger equations on Grassmann algebras,” Phys. Lett. A, 377, 3254–3259 (2013); arXiv:1303.1853v2 [nlin.SI] (2013).

    Article  ADS  MathSciNet  Google Scholar 

  17. L.-L. Xue, D. Levi, and Q. P. Liu, “Supersymmetric KdV equation: Darboux transformation and discrete systems,” J. Phys. A: Math. Theor., 46, 502001 (2013).

    Article  MathSciNet  Google Scholar 

  18. L.-L. Xue and Q. P. Liu, “Bäcklund–Darboux transformations and discretizations of super KdV equation,” SIGMA, 10, 045 (2014); arXiv:1312.6976v2 [nlin.SI] (2013).

    MATH  Google Scholar 

  19. L.-L. Xue and Q. P. Liu, “A supersymmetric AKNS problem and its Darboux–Bäcklund transformations and discrete systems,” Stud. Appl. Math., 135, 35–62 (2015).

    Article  MathSciNet  Google Scholar 

  20. G. G. Grahovski, S. Konstantinou-Rizos, and A. V. Mikhailov, “Grassmann extensions of Yang–Baxter maps,” J. Phys. A: Math. Theor., 49, 145202 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  21. S. Konstantinou-Rizos and T. E. Kouloukas, “A noncommutative discrete potential KdV lift,” J. Math. Phys., 59, 063506 (2018); arXiv:1611.08923v1 [nlin.SI] (2016).

    Article  ADS  MathSciNet  Google Scholar 

  22. S. Konstantinou-Rizos and A. V. Mikhailov, “Anticommutative extension of the Adler map,” J. Phys. A: Math. Theor., 49, 30LT03 (2016).

    Article  MathSciNet  Google Scholar 

  23. S. Konstantinou-Rizos, “On the \(3D\) consistency of a Grassmann extended lattice Boussinesq system,” Nucl. Phys. B, 951, 114878 (2020).

    Article  MathSciNet  Google Scholar 

  24. F. A. Berezin, Introduction to Superanalysis (Math. Phys. Appl. Math., Vol. 9, A. Kirillov, ed.), Springer, Dordrecht (1987).

    Book  Google Scholar 

  25. L. Frappat, A. Sciarrino, and P. Sorba, Dictionary on Lie Algebras and Superalgebras, Acad. Press, San Diego, Calif. (2000).

    MATH  Google Scholar 

  26. V. E. Adler, “Recuttings of polygons,” Funct. Anal. Appl., 27, 141–143 (1993).

    Article  MathSciNet  Google Scholar 

  27. A. P. Fordy, “Periodic cluster mutations and related integrable maps,” J. Phys. A: Math. Theor., 47, 474003 (2014).

    Article  MathSciNet  Google Scholar 

  28. S. Maeda, “Completely integrable symplectic mapping,” Proc. Japan Acad. Ser. A, 63, No. 6, 198–200 (1987).

    Article  MathSciNet  Google Scholar 

  29. A. P. Veselov, “Integrable maps,” Russian Math. Surveys, 46, 1–51 (1991).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank Vadim Kolesov for his comments.

Funding

This research started while S. Konstantinou-Rizos visited Heriot-Watt University in January 2019 and the University of Essex on an International Visiting Fellowship in November 2019. The research of S. Konstantinou-Rizos was supported by a grant from the Russian Science Foundation (Project No. 20-71-10110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Konstantinou-Rizos.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 207, pp. 179-187 https://doi.org/10.4213/tmf10045.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamopoulou, P., Konstantinou-Rizos, S. & Papamikos, G. Integrable extensions of the Adler map via Grassmann algebras. Theor Math Phys 207, 553–559 (2021). https://doi.org/10.1134/S0040577921050019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921050019

Keywords

Navigation