Skip to main content
Log in

Complicated behavior in cubic Hénon maps

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study a generalized Hénon map in two-dimensional space. We find a region of the phase space where the nonwandering set exists, specify parameter values for which this nonwandering set is hyperbolic, and prove that our map when restricted to a specific invariant subset is topologically conjugate to the Bernoulli three-shift. Coupling two such maps, as a result, we obtain a map in four-dimensional space and show that Bernoulli shifts also exist in this map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Hénon, “A two-dimensional mapping with a strange attractor,” Commun. Math. Phys., 50, 69–77 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  2. R. Devaney and Z. Nitecki, “Shift automorphisms in the Hénon mapping,” Commun. Math. Phys., 67, 137–146 (1979).

    Article  ADS  Google Scholar 

  3. V. Franceschini and L. Russo, “Stable and unstable manifolds of the Hénon mapping,” J. Stat. Phys., 25, 757–769 (1981).

    Article  ADS  Google Scholar 

  4. D. Sterling, H. R. Dullin, and J. D. Meiss, “Homoclinic bifurcations for the Hénon map,” Phys. D, 134, 153–184 (1999).

    Article  MathSciNet  Google Scholar 

  5. H. E. Lomeli and J. D. Meiss, “Quadratic volume-preserving maps,” Nonlinearity, 11, 557–574 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  6. S. V. Gonchenko, J. D. Meiss, and I. I. Ovsyannikov, “Chaotic dynamics of three-dimensional Hénon maps that originate from a homoclinic bifurcation,” Regul. Chaotic Dyn., 11, 191–212 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  7. Sh. Friedland and J. Milnor, “Dynamical properties of plane polynomial automorphisms,” Ergodic Theory Dynam. Systems, 9, 67–99 (1989).

    Article  MathSciNet  Google Scholar 

  8. H. R. Dullin and J. D. Meiss, “Generalized Hénon maps: The cubic diffeomorphisms of the plane. Bifurcations, patterns and symmetry,” Phys. D, 143, 262–289 (2000).

    Article  MathSciNet  Google Scholar 

  9. V. S. Gonchenko, Yu. A. Kuznetsov, and H. G. E. Meijer, “Generalized Hénon map and bifurcations of homoclinic tangencies,” SIAM J. Appl. Dyn. Syst., 4, 407–436 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  10. X. Zhang, “Hyperbolic invariant sets of the real generalized Hénon maps,” Chaos, Solitons Fractals, 43, 31–41 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Anastassiou, T. Bountis, and A. Bäcker, “Homoclinic points of 2D and 4D maps via the parametrization method,” Nonlinearity, 30, 3799–3820 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  12. S. Anastassiou, T. Bountis, and A. Bäcker, “Recent results on the dynamics of higher-dimensional Hénon maps,” Regul. Chaotic Dyn., 23, 161–177 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  13. V. S. Afraimovich, V. V. Bykov, and L. P. Shilnikov, “On attracting structurally unstable limit sets of Lorenz attractor type [in Russian],” Tr. Mosk. Mat. Obs., 44, 150–212 (1982).

    Google Scholar 

  14. S. Aubry, “Anti-integrability in dynamical and variational problems,” Phys. D, 86, 284–296 (1995).

    Article  MathSciNet  Google Scholar 

  15. Y.-C. Chen, “Anti-integrability in scattering billiards,” Dyn. Syst., 19, 145–159 (2004).

    Article  MathSciNet  Google Scholar 

  16. S. V. Bolotin and R. MacKay, “Multibump orbits near the anti-integrable limit for Lagrangian systems,” Nonlinearity, 10, 1015–1029 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  17. C. Baesens, Y.-C. Chen, and R. S. MacKay, “Abrupt bifurcations in chaotic scattering: View from the anti-integrable limit,” Nonlinearity, 26, 2703–2730 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  18. M.-C. Li and M. Malkin, “Bounded nonwandering sets for polynomial mappings,” J. Dynam. Control Systems, 10, 377–389 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  19. J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey, “On Devaney’s definition of chaos,” Amer. Math. Monthly, 99, 332–334 (1992).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Anastassiou.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 207, pp. 202-209 https://doi.org/10.4213/tmf10007.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anastassiou, S. Complicated behavior in cubic Hénon maps. Theor Math Phys 207, 572–578 (2021). https://doi.org/10.1134/S0040577921050032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921050032

Keywords

Navigation