Skip to main content
Log in

Comparative dynamics of chains of coupled van der Pol equations and coupled systems of van der Pol equations

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider chains of van der Pol equations closed into a ring and chains of systems of two first-order van der Pol equations. We assume that the couplings are homogeneous and the number of chain elements is sufficiently large. We naturally realize a transition to functions depending continuously on the spatial variable. As \(t\to\infty\), we study the behavior of all solutions of such chains with initial conditions sufficiently small in the norm. We identify critical cases in the stability problem and show that they all have an infinite dimension. We construct special nonlinear boundary value problems of parabolic type without small parameters, which play the role of normal forms. Their local dynamics determines the behavior of solutions of the original boundary value problems with two spatial variables. We formulate conditions under which the dynamical properties of both chains are close to each other. We establish that in several cases, the dynamics of chains of systems of van der Pol equations turns out to be essentially more complicated and diverse compared with the dynamics of chains of second-order van der Pol equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt, “Collective dynamics in optomechanical arrays,” Phys. Rev. Lett., 107, 043603 (2011); arXiv:1007.4819v1 [cond-mat.mes-hall] (2010).

    Article  ADS  Google Scholar 

  2. M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett., 109, 233906 (2012); arXiv:1112.3636v2 [physics.optics] (2011).

    Article  ADS  Google Scholar 

  3. E. A. Martens, S. Thutupalli, A. Fourrière, and O. Hallatschek, “Chimera states in mechanical oscillator networks,” Proc. Nat. Acad. Sci. (USA), 110, 10563–10567 (2013); arXiv:1301.7608v5 [nlin.AO] (2013).

    Article  ADS  Google Scholar 

  4. M. R. Tinsley, S. Nkomo, and K. Showalter, “Chimera and phase-cluster states in populations of coupled chemical oscillators,” Nature Phys., 8, 662–665 (2012).

    Article  ADS  Google Scholar 

  5. V. Vlasov and A. Pikovsky, “Synchronization of a Josephson junction array in terms of global variables,” Phys. Rev. E, 88, 022908 (2013); arXiv:1304.2181v1 [nlin.CD] (2013).

    Article  ADS  Google Scholar 

  6. T. E. Lee and H. R. Sadeghpour, “Quantum synchronization of quantum van der Pol oscillators with trapped ions,” Phys. Rev. Lett., 111, 234101 (2013); arXiv:1306.6359v2 [quant-ph] (2013).

    Article  ADS  Google Scholar 

  7. A. P. Kuznetsov, S. P. Kuznetsov, I. R. Sataev, and L. V. Turukina, “About Landau–Hopf scenario in a system of coupled self-oscillators,” Phys. Lett. A, 377, 3291–3295 (2013); arXiv:1303.5767v1 [nlin.CD] (2013).

    Article  ADS  MathSciNet  Google Scholar 

  8. D. Pazó and M. A. Matías, “Direct transition to high-dimensional chaos through a global bifurcation,” Europhys. Lett., 72, 176–182 (2005); arXiv:nlin/0407039v3 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  9. G. V. Osipov, A. S. Pikovsky, M. G. Rosenblum, and J. Kurths, “Phase synchronization effects in a lattice of nonidentical Rössler oscillators,” Phys. Rev. E, 55, 2353–2361 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  10. J. M. T. Thompson and H. B. Stewart, Nonlinear Dynamics and Chaos, John Wiley and Sons, Chichester (1986).

    MATH  Google Scholar 

  11. E. Simonotto, M. Riani, C. Seife, M. Roberts, J. Twitty, and F. Moss, “Visual perception of stochastic resonance,” Phys. Rev. Lett., 78, 1186–1189 (1997).

    Article  ADS  Google Scholar 

  12. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer Series Synergetics, Vol. 19), Springer, Berlin (1984).

    Book  Google Scholar 

  13. V. S. Afraimovich, V. I. Nekorkin, G. V. Osipov, and V. D. Shalfeev, Stability, Structures and Chaos in Nonlinear Synchronization Networks (World Sci. Series Nonlin. Sci. Ser. A: Monogr. Treatises, Vol. 6), World Scientific, Singapore (1994).

    MATH  Google Scholar 

  14. A. S. Pikovsky, M. G. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge Nonlin. Sci. Ser., Vol. 12), Cambridge Univ. Press, Cambridge (2001).

    Book  Google Scholar 

  15. G. V. Osipov, J. Kurths, and C. Zhou, Synchronization in Oscillatory Networks, Springer, Berlin (2007).

    Book  Google Scholar 

  16. M. M. Vainberg, “Integro-differential equations [in Russian],” in: Itogi Nauki. Mat. Anal. 1962, VINITI, Moscow (1964), pp. 5–37.

    Google Scholar 

  17. Ju. L. Daleckii and M. G.Krein, Stability of Solutions of Differential Equations in Banach Space [in Russian] Nauka Moscow (1970); English transl.: (Transl. Math. Monogr., Vol. 43),, Amer. Math. Soc., Providence, R. I. (1974).

    Google Scholar 

  18. S. S. Orlov, Generalized Solutions of Integro-Differential Equations of Higher Orders in Banach Spaces, Irkutsk State Univ. Press, Irkutsk (2014).

    Google Scholar 

  19. I. S. Kashchenko and S. A. Kashchenko, “Dynamics of the Kuramoto equationwith spatially distributed control,” Commun. Nonlinear Sci. Numer. Simul., 34, 123–129 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  20. S. A. Kaschenko, “Quasinormal forms for parabolic equations with small diffusion,” Dokl. Math., 37, 510–513 (1988).

    MathSciNet  Google Scholar 

  21. S. A. Kaschenko, “Normalization in the systems with small diffusion,” Internat. J. Bifur. Chaos Appl. Sci. Eng., 6, 1093–1109 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  22. S. A. Kashchenko, “Dynamics of delay systems with rapidly oscillating coefficients,” Differ. Equ., 54, 13–27 (2018).

    Article  MathSciNet  Google Scholar 

  23. S. A. Kashchenko, “Bifurcations in Kuramoto–Sivashinsky equations,” Theor. Math. Phys., 192, 958–973 (2017).

    Article  MathSciNet  Google Scholar 

  24. S. A. Kashchenko, “Asymptotics of regular solutions to the Camassa–Holm problem,” Comput. Math. and Math. Phys., 60, 258–271 (2020).

    Article  MathSciNet  Google Scholar 

  25. S. A. Kaschenko, “Asymptotics of periodic solutions of autonomous parabolic equations with small diffusion,” Siberian Math. J., 27, 880–889 (1986).

    Article  MathSciNet  Google Scholar 

  26. T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskii, and A. A. Samarskii, Nonstationary Structures and Diffusion Chaos [in Russian], Nauka, Moscow (1992).

    Google Scholar 

  27. I. S. Kashchenko and S. A. Kashchenko, “Infinite process of forward and backward bifurcations in the logistic equation with two delays,” Nonlinear Phenom. Complex Syst., 22, 407–412 (2019).

    Article  Google Scholar 

Download references

Funding

This research was performed in the framework of realizing the development program of the Regional Scientific-Educational Center (Yaroslavl Demidov State University) with financial support from the Ministry of Science and Higher Education of the Russian Federation (Supplemental Agreement No. 075-02-2020-1514/1 to the Agreement on Providing Subsidies from the Federal Budget No. 075-02-2020-1514)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kashenko.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 207, pp. 277-292 https://doi.org/10.4213/tmf10018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashenko, S.A. Comparative dynamics of chains of coupled van der Pol equations and coupled systems of van der Pol equations. Theor Math Phys 207, 640–654 (2021). https://doi.org/10.1134/S0040577921050081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921050081

Keywords

Navigation