Skip to main content
Log in

Complete cosmological model based on an asymmetric scalar Higgs doublet

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study a complete cosmological model based on an asymmetric scalar doublet represented by the classical and phantom scalar Higgs fields. Moreover, we remove the assumption that the expansion rate of the Universe is nonnegative, which contradicts the complete system of Einstein’s equations in several cases. We formulate a closed system of dynamical equations describing the evolution of the cosmological model and study the dependence of the topology of the Einstein–Higgs hypersurface of the five-dimensional phase space of the dynamical system that determines the global properties of the cosmological model based on the fundamental constants of the model. We analyze the dynamical system of the corresponding cosmological model qualitatively, construct asymptotic phase trajectories, and present numerical modeling results illustrating various types of behavior of the cosmological model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.
Fig. 36.
Fig. 37.
Fig. 38.
Fig. 39.
Fig. 40.

Similar content being viewed by others

Notes

  1. By a complete cosmological model, we mean a model without nonnegativity condition (1) for the Hubble constant.

  2. The cosmological constant is renormalized according to (7) in these equations.

  3. For simplicity of notation in what follows, we omit their zero coordinates \(Z,z\) in the coordinates of these points.

References

  1. Yu. G. Ignat’ev, “Conservation laws and thermodynamic equilibrium in the general relativistic kinetic theory of inelastically interacting particles,” Sov. Phys. J., 26, 1068–1072 (1983).

    Article  Google Scholar 

  2. Yu. G. Ignatyev and R. R. Kuzeev, “Thermodynamic equilibrium of self-gravitating plasma with scalar interaction [in Russian],” Ukr. Fiz. Zhurn., 29, 1021–1025 (1984).

    ADS  Google Scholar 

  3. Yu. G. Ignatyev and R. F. Miftakhov, “Statistical systems of particles with scalar interaction in cosmology,” Grav. Cosmol., 12, 179–185 (2006); arXiv:1101.1655v1 [gr-qc] (2011).

    ADS  MATH  Google Scholar 

  4. K. A. Bronnikov and J. C. Fabris, “Regular phantom black holes,” Phys. Rev. Lett., 96, 251101 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. S. V. Bolokhov, K. A. Bronnikov, and M. V. Skvortsova, “Magnetic black universes and wormholes with a phantom scalar,” Class. Quant. Grav., 29, 245006 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Yu. G. Ignatyev, “Cosmological evolution of the plasma with interparticle scalar interaction: III. Model with attraction of like-charged scalar particles,” Russ. Phys. J., 55, 1345–1350 (2013).

    Article  MathSciNet  Google Scholar 

  7. J. M. Cline, S. Jeon, and G. D. Moore, “The phantom menaced: Constraints on low-energy effective ghosts,” Phys. Rev. D, 70, 043543 (2004); arXiv:hep-ph/0311312v4 (2003).

    Article  ADS  Google Scholar 

  8. R. Kallosh, J. Kang, A. Linde, and V. Mukhanov, “The new ekpyrotic ghost,” J. Cosmol. Astropart. Phys., 2008, 018 (2008); arXiv:0712.2040v3 [hep-th] (2007).

    Article  MathSciNet  Google Scholar 

  9. S. Nojiri and E. N. Saridakis, “Phantom without ghost,” Astrophys. Space Sci., 347, 221–226 (2013).

    Article  ADS  MATH  Google Scholar 

  10. F. Sbisà, “Classical and quantum ghosts,” Eur. J. Phys., 36, 015009 (2014); arXiv:1406.4550v4 [hep-th] (2014).

    Article  Google Scholar 

  11. S. Yu. Vernov, “Exact solutions of nonlocal nonlinear field equations in cosmology,” Theor. Math. Phys., 166, 392–402 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  12. S. M. Carroll, M. Hoffman, and M. Trodden, “Can the dark energy equation-of-state parameter \(w\) be less than \(-1\)?” Phys. Rev. D, 68, 023509 (2003); arXiv:astro-ph/0301273v2 (2003).

    Article  ADS  Google Scholar 

  13. M. G. Richarte and G. M. Kremer, “Cosmological perturbations in transient phantom inflation scenarios,” Eur. Phys. J. C, 77, 51 (2016); arXiv:1612.03822v2 [gr-qc] (2016).

    Article  ADS  Google Scholar 

  14. A. Tripathi, A. Sangwan, and H. K. Jassal, “Dark energy equation of state parameter and its evolution at low redshift,” J. Cosmol. Astropart. Phys., 2017, No. 06, 012 (2017).

    Article  MathSciNet  Google Scholar 

  15. Y. Ma, J. Zhang, S. Cao, X. Zheng, T. Xu, and J. Qi, “The generalized cosmic equation of state: A revised study with cosmological standard rulers,” Eur. Phys. J. C, 77, 891 (2017).

    Article  ADS  Google Scholar 

  16. J. Meyers et. al., “The Hubble Space Telescope cluster supernova survey: III. Correlated properties of type Ia supernovae and their hosts at \(0.9<z<1.46\),” Astrophys. J., 750, 1–23 (2012); arXiv:1201.3989v1 [astro-ph.CO] (2012).

    Article  Google Scholar 

  17. R. Terlevich, E. Terlevich, J. Melnick, R. Chávez, M. Plionis, F. Bresolin, and S. Basilakos, “On the road to precision cosmology with high-redshift H II galaxies,” Mon. Not. R. Astron. Soc., 451, 3001–3010 (2015); arXiv:1505.04376v1 [astro-ph.CO] (2015).

    Article  ADS  Google Scholar 

  18. R. Chávez, M. Plionis, S. Basilakos, R. Terlevich, E. Terlevich, J. Melnick, F. Bresolin, and A. L. González-Morán, “Constraining the dark energy equation of state with H II galaxies,” Mon. Not. R. Astron. Soc., 462, 2431–2439 (2016); arXiv:1607.06458v1 [astro-ph.CO] (2016).

    Article  ADS  Google Scholar 

  19. R. Lazkoz and G. León, “Quintom cosmologies admitting either tracking or phantom attractors,” Phys. Lett. B, 638, 303–309 (2006); arXiv:astro-ph/0602590v1 (2006).

    Article  ADS  Google Scholar 

  20. Yu. G. Ignat’ev, “Cosmological evolution of plasma with scalar interparticle interaction: I. Canonical formulation of classical scalar interaction,” Russ. Phys. J., 55, 166–172 (2012).

    Article  MATH  Google Scholar 

  21. Yu. G. Ignatiev, “Cosmological evolution of the degenerated plasma with interparticle scalar interaction: II. Formulation of mathematical model,” Russ. Phys. J., 55, 550–560 (2012).

    Article  MATH  Google Scholar 

  22. Yu. G. Ignatyev, “Nonminimal macroscopic models of a scalar field based on microscopic dynamics [in Russian],” Prostranstvo, Vremya i Fundamental’nye Vzaimodeistviya, 1, No. 6, 47–69 (2014).

    Google Scholar 

  23. Yu. G. Ignatyev and D. Yu. Ignatyev, “Statistical systems with phantom scalar interaction in gravitation theory: I. Microscopic dynamics,” Grav. Cosmol., 20, 299–303 (2014); arXiv:1408.3404v1 [gr-qc] (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Yu. G. Ignatyev, A. A. Agathonov, and D. Yu. Ignatyev, “Statistical systems with phantom scalar interaction in gravitation theory: II. Macroscopic equations and cosmological models,” Grav. Cosmol., 20, 304–308 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Yu. G. Ignatyev, “Nonminimal macroscopic models of a scalar field based on microscopic dynamics: Extension of the theory to negative masses,” Grav. Cosmol., 21, 296–308 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Yu. G. Ignatyev and A. A. Agathonov, “Numerical models of cosmological evolution of a degenerate Fermi-system of scalar charged particles,” Grav. Cosmol., 21, 105–112 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Yu. G. Ignat’ev and M. L. Mikhailov, “Cosmological evolution of a Boltzmann plasma with interparticle phantom scalar interaction: I. Symmetric cases,” Russ. Phys. J., 57, 1743–1752 (2015).

    Article  MATH  Google Scholar 

  28. Yu. Ignat’ev, A. Agathonov, M. Mikhailov, and D. Ignatyev, “Cosmological evolution of statistical system of scalar charged particles,” Astrophys. Space Sci., 357, 61 (2015); arXiv:1411.6244v1 [gr-qc] (2014).

    Article  ADS  Google Scholar 

  29. Yu. G. Ignat’ev and A. A. Agathonov, “Statistical cosmological fermion systems with interparticle phantom scalar interaction [in Russian],” Prostranstvo, Vremya i Fundamental’nye Vzaimodeistviya, 3, No. 16, 48–90 (2016).

    Google Scholar 

  30. Yu. G. Ignat’ev, A. A. Agathonov, and D. Yu. Ignatyev, “Statistical cosmological fermion systems with phantom scalar interaction of particles,” Grav. Cosmol., 24, 1–12 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Yu. G. Ignatyev, “Qualitative and numerical analysis of the cosmological model with a phantom scalar field,” Russ. Phys. J., 59, 2074–2079 (2017).

    Article  MATH  Google Scholar 

  32. Yu. G. Ignat’ev and A. A. Agathonov, “Qualitative and numerical analysis of a cosmological model based on a phantom scalar field with self-interaction,” Grav. Cosmol., 23, 230–235 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. I. Ya. Aref’eva, A. S. Koshelev, and S. Yu. Vernov, “Crossing the \(w{=}{-}1\) barrier in the D3-brane dark energy model,” Phys. Rev. D, 72, 064017 (2005); arXiv:astro-ph/0507067v2 (2005).

    Article  ADS  Google Scholar 

  34. I. Ya. Aref’eva, S. Yu. Vernov, and A. S. Koshelev, “Exact solution in a string cosmological model,” Theor. Math. Phys., 148, 895–909 (2006); arXiv:astro-ph/0412619v5 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  35. S. Yu. Vernov, “Construction of exact solutions in two-field cosmological models,” Theor. Math. Phys., 155, 544–556 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  36. R. R. Caldwell, “A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state,” Phys. Lett. B, 545, 23–29 (2002).

    Article  ADS  Google Scholar 

  37. Yu. G. Ignat’ev, “Qualitative and numerical analysis of a cosmological modely based on a classical massive scalar field,” Grav. Cosmol., 23, 131–141 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Yu. G. Ignat’ev and I. A. Kokh, “Peculiarities of cosmological models based on a nonlinear asymmetric scalar doublet with minimal interaction: I. Qualitative analysis,” Grav. Cosmol., 25, 24–36 (2019); arXiv:1908.03488v3 [gr-qc] (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Yu. G. Ignat’ev and I. A. Kokh, “Peculiarities of cosmological models based on a nonlinear asymmetric scalar doublet with minimal interaction: II. Numerical analysis,” Grav. Cosmol., 25, 37–43 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Y. G. Ignat’ev and A. R. Samigullina, “On Euclidean limit cycles in cosmological models based on scalar fields,” Russ. Phys. J., 62, 618–626 (2019).

    Article  Google Scholar 

  41. Yu. G. Ignat’ev and D. Yu. Ignat’ev, “A complete model of cosmological evolution of a scalar field with Higgs potential and Euclidean cycles,” Grav. Cosmol., 26, 29–37 (2020); arXiv:2005.14010v1 [gr-qc] (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. G. Leon, A. Paliathanasis, and J. L. Morales-Martínez, “The past and future dynamics of quintom dark energy models,” Eur. Phys. J. C, 78, 753 (2018); arXiv:1808.05634v2 [gr-qc] (2018).

    Article  ADS  Google Scholar 

  43. O. I. Bogoyavlenskij, Methods of the Qualitative Theory of Dynamical Systems in Astrophysics and Gas Dynamics [in Russian], Nauka, Moscow (1980).

    MATH  Google Scholar 

  44. Ia. B. Zel’dovich and I. Novikov, Structure and Evolution of the Universe [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  45. Y.-F. Cai, E. N. Saridakis, M. R. Setare, and J.-Q. Xia, “Quintom cosmology: Theoretical implications and observations,” Phys. Rep., 493, 1–60 (2010); arXiv:0909.2776v2 [hep-th] (2009).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

This research is performed in accordance with the Russian Government Program of Competitive Growth of Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Ignat’ev.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 207, pp. 133-176 https://doi.org/10.4213/tmf9987.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignat’ev, Y.G., Kokh, I.A. Complete cosmological model based on an asymmetric scalar Higgs doublet. Theor Math Phys 207, 514–552 (2021). https://doi.org/10.1134/S0040577921040097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921040097

Keywords

Navigation