Skip to main content
Log in

Angular part of the Schrödinger equation for the Hautot potential as a harmonic oscillator with a coordinate-dependent mass in a uniform gravitational field

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct an exactly solvable model of a linear harmonic oscillator with a coordinate-dependent mass in a uniform gravitational field. This model is placed in an infinitely deep potential well with the width \(2a\) and corresponds to the exact solution of the angular part of the Schrödinger equation with one of the Hautot potentials. The wave functions of the oscillator model are expressed in terms of Jacobi polynomials. In the limit \(a\to\infty\), the equation of motion, wave functions, and energy spectrum of the model correctly reduce to the corresponding results of the ordinary nonrelativistic harmonic oscillator with a constant mass. We obtain a new asymptotic relation between the Jacobi and Hermite polynomials and prove it by two different methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. J. BenDaniel and C. B. Duke, “Space-charge effects on electron tunneling,” Phys. Rev., 152, 683–692 (1966).

    Article  ADS  Google Scholar 

  2. P. M. Mathews and M. Lakshmanan, “On a unique nonlinear oscillator,” Quart. Appl. Math., 32, 215–218 (1974).

    Article  MathSciNet  Google Scholar 

  3. O. von Roos, “Position-dependent effective masses in semiconductor theory,” Phys. Rev. B, 27, 7547–7552 (1983).

    Article  ADS  Google Scholar 

  4. J.-M. Lévy-Leblond, “Position-dependent effective mass and Galilean invariance,” Phys. Rev. A, 52, 1845–1849 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  5. A. R. Plastino, A. Rigo, M. Casas, F. Garcias, and A. Plastino, “Supersymmetric approach to quantum systems with position-dependent effective mass,” Phys. Rev. A, 60, 4318–4325 (1999).

    Article  ADS  Google Scholar 

  6. J. F. Cariñena, M. F. Rañada, and M. Santander, “One-dimensional model of a quantum nonlinear harmonic oscillator,” Rep. Math. Phys., 54, 285–293 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  7. A. D. Alhaidari, “Solution of the Dirac equation with position-dependent mass in the Coulomb field,” Phys. Lett. A, 322, 72–77 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  8. C. Quesne and V. M. Tkachuk, “Deformed algebras, position-dependent effective masses, and curved spaces: An exactly solvable Coulomb problem,” J. Phys. A: Math. Gen., 37, 4267–4281 (2004); arXiv:math-ph/0403047v1 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  9. H. Rajbongshi and N. N. Singh, “Generation of exactly solvable potentials of the \(D\)-dimensional position-dependent mass Schrödinger equation using the transformation method,” Theor. Math. Phys., 183, 715–729 (2015).

    Article  Google Scholar 

  10. H. Rajbongshi, “Exactly solvable potentials and the bound-state solution of the position-dependent mass Schrödinger equation in \(D\)-dimensional space,” Theor. Math. Phys., 184, 996–1010 (2015).

    Article  MathSciNet  Google Scholar 

  11. J. F. Cariñena, M. F. Rañada, and M. Santander, “Quantization of Hamiltonian systems with a position dependent mass: Killing vector fields and Noether momenta approach,” J. Phys. A: Math. Theor., 50, 465202 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  12. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructure, Les Éditions de Physique, Les Ulis Cedex, France (1988).

    Google Scholar 

  13. M. Barranco, M. Pi, S. M. Gatica, E. S. Hernández, and J. Navarro, “Structure and energetics of mixed \(^4\)He–\(^3\)He drops,” Phys. Rev. B, 56, 8997–9003 (1997).

    Article  ADS  Google Scholar 

  14. P. Harrison, Quantum Wells, Wires, and Dots, John Wiley and Sons, New York (2000).

    Google Scholar 

  15. M. Lozada-Cassou, S.-H. Dong, and J. Yu, “Quantum features of semiconductor quantum dots,” Phys. Lett. A, 331, 45–52 (2004).

    Article  ADS  Google Scholar 

  16. S.-H. Dong and M. Lozada-Cassou, “Exact solutions of the Schrödinger equation with the position-dependent mass for a hard-core potential,” Phys. Lett. A, 337, 313–320 (2005).

    Article  ADS  Google Scholar 

  17. E. Schrödinger, “An undulatory theory of the mechanics of atoms and molecules,” Phys. Rev., 28, 1049–1070 (1926).

    Article  ADS  Google Scholar 

  18. P. A. M. Dirac, Principles of Quantum Mechanics, Oxford Univ. Press, Oxford (1982).

    Google Scholar 

  19. O. Klein, “Quantentheorie und fünfdimensionale Relativitätstheorie,” Z. Phys., 37, 895–906 (1926).

    Article  ADS  Google Scholar 

  20. W. Gordon, “Der Comptoneffekt nach der Schrödingerschen Theorie,” Z. Phys., 40, 117–133 (1926).

    Article  ADS  Google Scholar 

  21. V. G. Kadyshevsky, R. M. Mir-Kasimov, and N. B. Skachkov, “Quasi-potential approach and the expansion in relativistic spherical functions,” Nuovo Cimento Ser. A, 55, 233–257 (1968).

    Article  ADS  Google Scholar 

  22. S. M. Nagiyev and K. S. Jafarova, “Relativistic quantum particle in a time-dependent homogeneous field,” Phys. Lett. A, 377, 747–752 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  23. P. M. Morse, “Diatomic molecules according to the wave mechanics: II. Vibrational levels,” Phys. Rev., 34, 57–64 (1929).

    Article  ADS  Google Scholar 

  24. G. Pöschl and E. Teller, “Bemerkungen zur Quantenmechanik des anharmonischen Oszillators,” Z. Phys., 83, 143–151 (1933).

    Article  ADS  Google Scholar 

  25. L. Hulthén, “Über die Eigenlösungen der Schrödinger–Gleichung des Deuterons,” Ark. Mat. Astron. Fys., 28A, No. 5, 1–12 (1942).

    MathSciNet  MATH  Google Scholar 

  26. R. D. Woods and D. S. Saxon, “Diffuse surface optical model for nucleon–nuclei scattering,” Phys. Rev., 95, 577–578 (1954).

    Article  ADS  Google Scholar 

  27. H. Hartmann, “Die Bewegung eines Körpers in einem ringförmigen Potentialfeld,” Theoret. Chim. Acta, 24, 201–206 (1972).

    Article  Google Scholar 

  28. A. Hautot, “Exact motion in noncentral electric fields,” J. Math. Phys., 14, 1320–1327 (1973).

    Article  ADS  Google Scholar 

  29. Sh. M. Nagiyev and A. I. Ahmadov, “Exact solution of the relativistic finite-difference equation for the Coulomb plus a ring-shaped-like potential,” Internat. J. Modern Phys. A, 34, 1950089 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  30. A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics [in Russian], Nauka, Moscow (1984); English transl., Birkhäuser, Basel (1988).

    MATH  Google Scholar 

  31. H. Bateman and A. Erdélyi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York (1953).

    MATH  Google Scholar 

  32. R. Koekoek, P. A. Lesky, and R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their \(q\)-Analogues, Springer, Berlin (2010).

    Book  Google Scholar 

  33. G. Ghosh, T. K. Roy, and R. Gangopadhyay, “Dynamical symmetry and exact solvability,” Phys. Rev. A, 36, 1449–1451 (1987).

    Article  ADS  Google Scholar 

  34. Y. Alhassid, F. Gürsey, and F. Iachello, “Potential scattering, transfer matrix, and group theory,” Phys. Rev. Lett., 50, 873–876 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  35. E. I. Jafarov, S. M. Nagiyev, and A. M. Jafarova, “Quantum-mechanical explicit solution for the confined harmonic oscillator model with the von Roos kinetic energy operator,” Rep. Math. Phys., 86, 25–37 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  36. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series [in Russian], Vol. 2, Special Functions [in Russian], Nauka, Moscow (1983); English transl., Gordon and Breach, New York (1986).

    MATH  Google Scholar 

  37. R. C. Miller, A. C. Gossard, D. A. Kleinman, and O. Munteanu, “Parabolic quantum wells with the GaAs-Al\(_x\)Ga\(_{1-x}\)As system,” Phys. Rev. B, 29, 3740–3743 (1984).

    Article  ADS  Google Scholar 

  38. R. C. Miller, D. A. Kleinman, and A. C. Gossard, “Energy-gap discontinuities and effective masses for GaAs-Al\(_x\)Ga\(_{1-x}\)As quantum wells,” Phys. Rev. B, 29, 7085–7087 (1984).

    Article  ADS  Google Scholar 

  39. R. C. Miller, A. C. Gossard, and D. A. Kleinman, “Band offsets from two special GaAs-Al\(_x\)Ga\(_{1-x}\)As quantum well structures,” Phys. Rev. B, 32, 5443–5446 (1985).

    Article  ADS  Google Scholar 

  40. A. C. Gossard, R. C. Miller, and W. Wiegmann, “MBE growth and energy levels of quantum wells with special shapes,” Surf. Sci., 174, 131–135 (1986).

    Article  ADS  Google Scholar 

Download references

Funding

The research of E. I. Jafarov is supported by the Science Foundation of the State Oil Company of the Azerbaijan Republic 2019–2020 (Grant No. 13LR-AMEA) and the Science Development Fund under the President of the Republic of Azerbaijan (Grant No. EIF-KETPL-2-2015-1(25)-56/01/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Jafarov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 207, pp. 58-71 https://doi.org/10.4213/tmf9960.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafarov, E.I., Nagiyev, S.M. Angular part of the Schrödinger equation for the Hautot potential as a harmonic oscillator with a coordinate-dependent mass in a uniform gravitational field. Theor Math Phys 207, 447–458 (2021). https://doi.org/10.1134/S0040577921040048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921040048

Keywords

Navigation