Skip to main content
Log in

Investigation of SH wave propagation in piezoelectric plates

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the propagation of transversally horizontal waves (SH) propagating in a piezoelectric plate is investigated. The dispersion curve is obtained numerically in the frequency domain by employing the power series technique (PST). In order to verify the sensitivity of the SH wave characteristics to different piezoelectric plate properties, the effect of each plate property is studied separately. Through different plates, the influence of each plate property on dispersion and SH wave structure is discussed. The electrically open and shorted conditions are considered. The study is focused on the first three SH modes. It is shown that the plate properties can be classified into two categories. Further, there is compensation between their effects on the phase velocity, electromechanical coupling coefficient, and SH wave structure. These results can be useful for the designs of acoustic wave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Chimenti, D.E.: Guided waves in plates and their use in materials characterization. Appl. Mec. Rev. 50, 247–284 (1997)

    Article  Google Scholar 

  2. Tiersten, H.F.: Wave propagation in an infinite piezoelectric plate. J. Acoust. Soc. Am. 35, 53–58 (1963)

    Article  MathSciNet  Google Scholar 

  3. Bleustein, J.L.: Some simple modes of wave propagation in an infinite piezoelectric plates. J. Acoust. Soc. Am. 45, 614–620 (1969)

    Article  Google Scholar 

  4. Chen, S., Tang, T., Wang, Z.: Shear-horizontal acoustic wave propagation in piezoelectric bounded plates with metal gratings. J. Acoust. Soc. Am. 117, 3609–3615 (2005)

    Article  Google Scholar 

  5. Zaitsevy, B.D., Joshiy, S.G., Kuznetsovaz, I.E.: Investigation of quasi-shear-horizontal acoustic waves in thin plates of lithium niobate. Smart Mater. Struct. 6, 739–744 (1997)

    Article  Google Scholar 

  6. Niemczyk, T.M., Martin, S.J., Frye, G.C., Ricco, A.J.: Acoustoelectric interaction of plate modes with solutions. J. Appl. Phys. 64, 5002–5008 (1988)

    Article  Google Scholar 

  7. Martin, S.J., Ricco, A.J., Niemczyk, T.M., Frye, G.C.: Characterization of SH acoustic plate mode liquid sensors. Sensors Actuators. 20, 253–268 (1989)

    Article  Google Scholar 

  8. Grate, J.W., Martin, S.J., White, R.M., Frye, G.C.: Acoustic wave microsensors Part I. Anal. Chem. 65(21), 940 (1993)

    Article  Google Scholar 

  9. Hager, H.E.: Fluid property evaluation by piezoelectric crystals operating in the thickness shear mode. Chem. Eng. Commun. 43, 25–38 (1986)

    Article  MathSciNet  Google Scholar 

  10. Kovacs, G., Vellekoop, M.J., Haueis, R., Lubking, G.W., Venema, A.: A love wave sensor for (bio) chemical sensing in liquids. Sensors Actuat. A 43, 38–43 (1994)

    Article  Google Scholar 

  11. Vasile, C.F., Thompson, R.B.: Excitation of horizontally polarized shear elastic waves by electromagnetic transducers with periodic permanent magnets. J. Appl. Phys. 50, 2583–2598 (1979)

    Article  Google Scholar 

  12. Rajagopal, P., Lowe, M.J.S.: Scattering of the fundamental shear horizontal guided wave by part-thickness crack in an isotropic plate. J. Acoust. Soc. Am. 124, 2895–2904 (2008)

    Article  Google Scholar 

  13. Bostrӧm, A., Golub, M.: Elastic SH wave propagation in a layered anisotropic plate with interface damage modelled by spring boundary conditions. Q. J. Mech. Appl. Math. 62, 39–51 (2008)

    Article  Google Scholar 

  14. Zhao, X., Rose, J.L.: Guided circumferential shear horizontal waves in an isotropic hollow cylinder. J. Acoust. Soc. Am. 115, 1912–1926 (2004)

    Article  Google Scholar 

  15. Valier-Brasier, T., Potel, C., Bruneau, M.: Shear acoustic waves polarized along the ridged surface of an isotropic solid plate: mode coupling effects due to the shape profile. J. Appl. Phys. 108, 1–9 (2010)

    Article  Google Scholar 

  16. Li, W., Xu, C., Cho, Y.: Third harmonic generation of shear horizontal guided waves propagation in plate-like structures. JKSNT. 36, 149–154 (2016)

    Article  Google Scholar 

  17. Ben salah, I., Njeh, A., Ben Ghozlen, M.H.: The peano-series solution for modeling shear horizontal waves in piezoelectric plates, EPJ Web of Conferences. 29, 00044 (2012).

  18. Chen, C., Zhang, R., Cao, W.: Theoretical study on guided wave propagation in (1–x)Pb(Mg1/3Nb2/3)O3xPbTiO3(x = 0.29 and 0.33) single crystal plates. J. Phys. D: Appl. Phys. 42, 095411 (2009)

    Article  Google Scholar 

  19. Aleomraninejad, S.M.A., Ghalandari, M., BabayarRazlighi, B., Lavaei, L.: Variational method to spatial soliton propagation in a waveguide with periodic parabolic index profile. Opt. Int. J. Light Electron Opt. 142, 651–656 (2017)

    Article  Google Scholar 

  20. Wang, Y., Song, W., Sun, E., Zhang, R., Cao, W.: Tunable passband in one-dimensional phononic crystal containing a piezoelectric 0.62Pb(Mg1/3Nb2/3)O3–0.38PbTiO3 single crystal defect layer. Phys. E 60, 37–41 (2014)

    Article  Google Scholar 

  21. Kuo, C.K.: A novel method for finding new multi-soliton wave solutions of the completely integrable equations. Opt. Int. J. Light Electron Opt. 139, 283–290 (2017)

    Article  Google Scholar 

  22. Adler, E.L.: SAW and pseudo-SAW properties using matrix methods. IEEE TUFFC 41, 699–705 (1994)

    Article  Google Scholar 

  23. Cao, X., Jin, F., Jeon, I.: Calculation of propagation properties of Lamb waves in a functionally graded material (FGM) plate by power series technique. NDT E Int. 44, 84–92 (2011)

    Article  Google Scholar 

  24. Bouhdima, M.S., Zagrouba, M., Ben Ghozlen, M.H.: The power series technique and detection of zero-group velocity Lamb waves in a functionally graded material (FGM) plate. CJP. 90, 159–164 (2012)

    Article  Google Scholar 

  25. Zagrouba, M., Bouhdima, M.S., Ben Ghozlen, M.H.: S1-ZGV modes of a linear and nonlinear profile for functionally graded material using power series technique. Adv. Acoust. Vib. 2014, 401042 (2014)

    Google Scholar 

  26. Zagrouba, M., Bouhdima, M.S., Ben Ghozlen, M.H.: Numerical study of S1 zero group velocity Lamb modes for nonlinear functionally graded materials. CJP 94, 1189–1194 (2016)

    Article  Google Scholar 

  27. Lewis, M.F.: Surface skimming bulk waves. SSBW Ultras. Symp. Proc. 77, 744–752 (1978)

    Google Scholar 

  28. Fukuhara, M., Kuwano, Y.: Propagation characteristics of SH ultrasonic waves through the surface depth of isotropic medium. NDT E Int. 31, 201–210 (1998)

    Article  Google Scholar 

  29. Kim, I.K., Kim, Y.Y.: Shear horizontal wave transduction in plates by magnetostrictive gratings. J. Mech. Sci. Tech. 21, 693–698 (2007)

    Article  Google Scholar 

  30. Li, W., Cho, Y., Achenbach, J.D.: Detection of thermal fatigue in composites by second harmonic Lamb waves. Smart. Mater. Struct. 21, 085019 (2012)

    Article  Google Scholar 

  31. Fortunko, C.M., King, R.B.: Nondestructive evaluation of planar defects in using low-frequency shear horizontal waves. J. Appl. Phys. 53, 3450–3458 (1982)

    Article  Google Scholar 

  32. Hirao, M., Ogi, H.: An SH-wave EMAT technique for gas pipeline inspection. NDT E Int. 32, 127–132 (1999)

    Article  Google Scholar 

  33. Crom, B.L., Castaings, M.: Shear horizontal guided wave modes to infer the shear stiffness of adhesive bond layers. J. Acoust. Soc. Am. 127, 2220–2230 (2010)

    Article  Google Scholar 

  34. Filho, J.F.M.R., Tremblay, N., Fonseca, G.S.D., Belanger, P.: The feasibility of structural health monitoring using the fundamental shear horizontal guided wave in a thin aluminum plate. Materials 10, 551 (2017)

    Article  Google Scholar 

  35. Rose, J.L., Borigo, C., Owens, S., Reese, S.A.: Rapid large area inspection from a single sensor position: a guided shear wave phased array scan, materials. Evaluation. 75, 671–678 (2017)

    Google Scholar 

  36. Liu, G., Philtron, J., Zhu, Y., Rose, J.L., Han, M.: Detection of fundamental shear horizontal guided waves using a surface-bonded chirped-fiber-Bragg-grating Fabry-Perot interferometer. JLT 36(11), 2286–2294 (2018)

    Google Scholar 

  37. Castaings, M., Hosten, B.: Lamb and SH waves generated and detected by air-coupled ultrasonic transducers in composite material plates. NDT E Int. 34, 249–258 (2001)

    Article  Google Scholar 

  38. Josse, F., Bender, F., Cernosek, R.W.: Guided shear horizontal surface acoustic wave sensors for chemical and biochemical detection in liquids. Anal. Chem. 73, 5937–5944 (2001)

    Article  Google Scholar 

  39. Lee, J.S., Kim, H.W., Jeon, B.C.: Damage detection in a plate using beam-focused shear-horizontal wave magnetostrictive patch transducers. AIAA J. 48, 654–661 (2010)

    Article  Google Scholar 

  40. Wang, Q., Varadan, V.K.: Wave propagation in piezoelectric bounded plates by use of interdigital transducer. I. Dispersion characteristics. Int. J. Solids. Struct. 39, 1119–1130 (2002)

    Article  MATH  Google Scholar 

  41. Pastureaud, T., Laude, V., Ballandras, S.: Stable scattering-matrix method for surface acoustic waves in piezoelectric multilayers. Appl. Phys. Lett. 80, 2544–2546 (2002)

    Article  Google Scholar 

  42. Lowe, M.J.S.: Matrix techniques for modeling ultrasonic waves in multilayered media. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42(4), 525–542 (1995)

    Article  Google Scholar 

  43. Yu, X., Manogharan, P., Fan, Z., Rajagopal, P.: Shear horizontal feature guided ultrasonic waves in plate structures with 90° transverse bends. Ultras. 65, 370–379 (2016)

    Article  Google Scholar 

  44. Nie, G., Liu, J., Kong, Y., Fang, X.: SH waves in (1–x)Pb(Mg1/3Nb2/3)O3xPbTiO3 piezoelectric layered structures loaded with viscous liquid. Acta Mech. Solida Sin. 29, 479–489 (2016)

    Article  Google Scholar 

  45. Cao, X., Jin, F., Jeon, I.: Characterization of the variation of the material properties in a freestanding inhomogeneous thin film. Phys. Lett. A 375, 220–224 (2010)

    Article  Google Scholar 

  46. Bernhard, J., Michael, J.V.: Properties of love waves, applications in sensors. Smart. Mater. Struct. 6, 668–679 (1997)

    Article  Google Scholar 

  47. Kuznetsova, I.E., Zaitsev, B.D., Joshi, S.G., Borodina, I.A.: Investigation of acoustic waves in thin plates of Niobate and Lithium tantalite. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 322–328 (2001)

    Article  Google Scholar 

  48. Zaitsev, B.D., Joshi, S.G., Kuznetsova, I.E.: Investigation of quasi-shear-horizontal acoustic waves in thin plates of lithium niobate. Smart. Mater. Struct. 6, 739–744 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the funding provided to LPM laboratory by the Tunisian Ministry of Higher Education, Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouldi Zagrouba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zagrouba, M., Bouhdima, M.S. Investigation of SH wave propagation in piezoelectric plates. Acta Mech 232, 3363–3379 (2021). https://doi.org/10.1007/s00707-021-02990-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-02990-x

Navigation