Skip to main content
Log in

Analytical study on the primary and secondary organic carbon and elemental carbon in the particulate matter at the high-altitude Monte Curcio GAW station, Italy

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study provides a thorough investigation of the trends of organic carbon (OC) and elemental carbon (EC) in particulate matter (PM)10 and PM2.5 samples collected at the Monte Curcio Observatory (1780 m a.s.l.), a station of the Global Atmosphere Watch (GAW) program and Global Mercury Observation System (GMOS) network. Although the drawn attention toward these pollutants, there is still a lack of data for southern Italy, and this work is a contribution toward the filling of this gap. PM was sampled daily in 2016 and analyzed by thermo-optical transmittance method, while equivalent black carbon (eBC) concentrations in PM10 were simultaneously measured using a multiangle absorption photometer. The results showed that in PM10, the average values of OC and EC were 1.43 μgC/m3 and 0.12 μgC/m3, whereas in PM2.5, these concentrations were 1.09 μgC/m3 and 0.12 μgC/m3, respectively. We detected a clear seasonal variability in OC and EC with higher concentrations during the warm period. Moreover, the analysis of the OC/EC ratio revealed that most of the carbonaceous aerosol was transported by long-range air masses, as further confirmed by the use of the concentration-weighed trajectory (CWT) model. The mass absorption cross-section at 632 nm of EC (MACEC) over the entire period was 9.67 ± 4.86 m2/g and 8.70 ± 3.18 m2/g in PM2.5 and PM10, respectively, and did not exhibit a clear seasonal variation. The concentrations for OC and EC were also used for the computation of the secondary organic carbon (SOC) content, whose outcomes resulted in a seasonal trend similar to those obtained for OC and EC. As regards the eBC, its weekly pattern showed a slight increase during the weekend in the warm period, consistent with the anthropic activities in the touristic area surrounding the observatory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Andreae MO, Gelencsér A (2006) Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys 6:3131–3148. https://doi.org/10.5194/acp-6-3131-2006

    Article  CAS  Google Scholar 

  • Avino P, Brocco D, Lepore L (2001) Determination of atmospheric organic and elemental carbon particle in rome with a thermal method. Anal Lett 34:967–974. https://doi.org/10.1081/AL-100103606

    Article  CAS  Google Scholar 

  • Belis CA, Karagulian F, Larsen BR, Hopke PK (2013) Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos Environ 69:94–108

    Article  CAS  Google Scholar 

  • Bencardino M, Andreoli V, D’Amore F, Simone FD, Mannarino V, Castagna J, Moretti S, Naccarato A, Sprovieri F, Pirrone N (2019) Carbonaceous aerosols collected at the observatory of Monte Curcio in the southern Mediterranean basin. Atmosphere (Basel) 10:592. https://doi.org/10.3390/atmos10100592

    Article  CAS  Google Scholar 

  • Bian Q, Alharbi B, Sharee MM et al (2017) Sources of PM2.5 carbonaceous aerosol in Riyadh, Saudi Arabia. Atmos Chem Phys Discuss:1–36. https://doi.org/10.5194/acp-2017-829

  • Bond TC, Bergstrom RW (2006) Light absorption by carbonaceous particles: an investigative review. Aerosol Sci Technol 40:27–67. https://doi.org/10.1080/02786820500421521

    Article  CAS  Google Scholar 

  • Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, Flanner MG, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn PK, Sarofim MC, Schultz MG, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda SK, Hopke PK, Jacobson MZ, Kaiser JW, Klimont Z, Lohmann U, Schwarz JP, Shindell D, Storelvmo T, Warren SG, Zender CS (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118:5380–5552. https://doi.org/10.1002/jgrd.50171

    Article  CAS  Google Scholar 

  • Briggs NL, Long CM (2016) Critical review of black carbon and elemental carbon source apportionment in Europe and the United States. Atmos Environ 144:409–427

    Article  CAS  Google Scholar 

  • Carslaw D (2015) The openair manual open-source tools for analysing air pollution data. King’s Coll London 287

  • Castro LM, Pio CA, Harrison RM, Smith DJT (1999) Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations. Atmos Environ 33:2771–2781. https://doi.org/10.1016/S1352-2310(98)00331-8

    Article  CAS  Google Scholar 

  • Cavalli F, Viana M, Yttri KE, Genberg J, Putaud JP (2010) Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol. Atmos Meas Tech 3:79–89. https://doi.org/10.5194/amt-3-79-2010

    Article  CAS  Google Scholar 

  • Cesari D, Merico E, Dinoi A, Marinoni A, Bonasoni P, Contini D (2018) Seasonal variability of carbonaceous aerosols in an urban background area in Southern Italy. Atmos Res 200:97–108. https://doi.org/10.1016/j.atmosres.2017.10.004

    Article  CAS  Google Scholar 

  • Chen P, Kang S, Li C, Zhang Q, Guo J, Tripathee L, Zhang Y, Li G, Gul C, Cong Z, Wan X, Niu H, Panday AK, Rupakheti M, Ji Z (2019) Carbonaceous aerosol characteristics on the Third Pole: a primary study based on the Atmospheric Pollution and Cryospheric Change (APCC) network. Environ Pollut 253:49–60. https://doi.org/10.1016/j.envpol.2019.06.112

    Article  CAS  Google Scholar 

  • Cheng Y, He KB, Zheng M, Duan FK, du ZY, Ma YL, Tan JH, Yang FM, Liu JM, Zhang XL, Weber RJ, Bergin MH, Russell AG (2011) Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China. Atmos Chem Phys 11:11497–11510. https://doi.org/10.5194/acp-11-11497-2011

    Article  CAS  Google Scholar 

  • Crenn V, Fronval I, Petitprez D, Riffault V (2017) Fine particles sampled at an urban background site and an industrialized coastal site in northern France — part 1: seasonal variations and chemical characterization. Sci Total Environ 578:203–218. https://doi.org/10.1016/j.scitotenv.2015.11.165

    Article  CAS  Google Scholar 

  • Dinoi A, Cesari D, Marinoni A, Bonasoni P, Riccio A, Chianese E, Tirimberio G, Naccarato A, Sprovieri F, Andreoli V, Moretti S, Gullì D, Calidonna C, Ammoscato I, Contini D (2017) Inter-comparison of carbon content in PM2.5 and PM10 collected at five measurement sites in Southern Italy. Atmosphere (Basel) 8:243. https://doi.org/10.3390/atmos8120243

    Article  CAS  Google Scholar 

  • Draxler RR, Rolph GD (2003) HYSPLIT (hybrid single-particle Lagrangian integrated trajectory). NOAA Air Resour Lab Coll Park MD

  • EPA USEPA (2012) APTI Course 435, atmospheric sampling. BiblioGov

  • Feng Y, Ramanathan V, Kotamarthi VR (2013) Brown carbon: a significant atmospheric absorber of solar radiation. Atmos Chem Phys 13:8607–8621. https://doi.org/10.5194/acp-13-8607-2013

    Article  CAS  Google Scholar 

  • Galindo N, Yubero E, Clemente A, Nicolás JF, Navarro-Selma B, Crespo J (2019) Insights into the origin and evolution of carbonaceous aerosols in a mediterranean urban environment. Chemosphere 235:636–642. https://doi.org/10.1016/j.chemosphere.2019.06.202

    Article  CAS  Google Scholar 

  • Glasius M, Hansen AMK, Claeys M, Henzing JS, Jedynska AD, Kasper-Giebl A, Kistler M, Kristensen K, Martinsson J, Maenhaut W, Nøjgaard JK, Spindler G, Stenström KE, Swietlicki E, Szidat S, Simpson D, Yttri KE (2018) Composition and sources of carbonaceous aerosols in northern Europe during winter. Atmos Environ 173:127–141. https://doi.org/10.1016/j.atmosenv.2017.11.005

    Article  CAS  Google Scholar 

  • Grahame TJ, Klemm R, Schlesinger RB (2014) Public health and components of particulate matter: the changing assessment of black carbon. J Air Waste Manage Assoc 64:620–660. https://doi.org/10.1080/10962247.2014.912692

    Article  CAS  Google Scholar 

  • Hsu Y-K, Holsen TM, Hopke PK (2003) Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmos Environ 37:545–562. https://doi.org/10.1016/S1352-2310(02)00886-5

    Article  CAS  Google Scholar 

  • IPCC (2013) Summary for policymakers. Cambridge University Press, Cambridge

  • Janssen NAH, Hoek G, Simic-Lawson M, Fischer P, van Bree L, ten Brink H, Keuken M, Atkinson RW, Anderson HR, Brunekreef B, Cassee FR (2011) Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM 10 and PM 2.5. Environ. Health Perspect 119:1691–1699

    Article  CAS  Google Scholar 

  • Jeong U, Kim J, Lee H, Jung J, Kim YJ, Song CH, Koo JH (2011) Estimation of the contributions of long range transported aerosol in East Asia to carbonaceous aerosol and PM concentrations in Seoul, Korea using highly time resolved measurements: a PSCF model approach. J Environ Monit 13:1905–1918. https://doi.org/10.1039/c0em00659a

    Article  CAS  Google Scholar 

  • Joint Research Centre - Photovoltaic Geographical Information System (PVGIS) (2021) European Commission, Joint Research Centre, Intitute for Energy, Renewable Energy Unit. http://re.jrc.ec.europa.eu/pvgis/index.htm. Accessed Jun 2021

  • Jones AM, Harrison RM (2005) Interpretation of particulate elemental and organic carbon concentrations at rural, urban and kerbside sites. Atmos Environ 39:7114–7126. https://doi.org/10.1016/j.atmosenv.2005.08.017

    Article  CAS  Google Scholar 

  • Kanakidou M, Mihalopoulos N, Kindap T, Im U, Vrekoussis M, Gerasopoulos E, Dermitzaki E, Unal A, Koçak M, Markakis K, Melas D, Kouvarakis G, Youssef AF, Richter A, Hatzianastassiou N, Hilboll A, Ebojie F, Wittrock F, von Savigny C, Burrows JP, Ladstaetter-Weissenmayer A, Moubasher H (2011) Megacities as hot spots of air pollution in the East Mediterranean. Atmos Environ 45:1223–1235. https://doi.org/10.1016/j.atmosenv.2010.11.048

    Article  CAS  Google Scholar 

  • Kanaya Y, Komazaki Y, Pochanart P et al (2008) Mass concentrations of black carbon measured by four instruments in the middle of Central East China in June 2006. Atmos Chem Phys Discuss 8:14957–14990. https://doi.org/10.5194/acpd-8-14957-2008

    Article  Google Scholar 

  • Kim KH, Sekiguchi K, Kudo S, Sakamoto K (2011) Characteristics of atmospheric elemental carbon (char and soot) in ultrafine and fine particles in a roadside environment, Japan. Aerosol Air Qual Res 11:1–12. https://doi.org/10.4209/aaqr.2010.07.0061

    Article  CAS  Google Scholar 

  • Lack DA, Langridge JM, Bahreini R, Cappa CD, Middlebrook AM, Schwarz JP (2012) Brown carbon and internal mixing in biomass burning particles. Proc Natl Acad Sci U S A 109:14802–14807. https://doi.org/10.1073/pnas.1206575109

    Article  Google Scholar 

  • Lavanchy VMH, Gäggeler HW, Nyeki S, Baltensperger U (1999) Elemental carbon (EC) and black carbon (BC) measurements with a thermal method and an aethalometer at the high-alpine research station Jungfraujoch. Atmos Environ 33:2759–2769. https://doi.org/10.1016/S1352-2310(98)00328-8

    Article  CAS  Google Scholar 

  • Lelieveld J, Berresheim H, Borrmann S et al (2002) Global air pollution crossroads over the Mediterranean. Science (80- ) 298:794–799. 298:794–799. https://doi.org/10.1126/science.1075457

  • Li Z, Leighton HG (1993) Global climatologies of solar radiation budgets at the surface and in the atmosphere from 5 years of ERBE data. J Geophys Res 98:4919–4930. https://doi.org/10.1029/93jd00003

    Article  Google Scholar 

  • Massling A, Nielsen IE, Kristensen D, Christensen JH, Sørensen LL, Jensen B, Nguyen QT, Nøjgaard JK, Glasius M, Skov H (2015) Atmospheric black carbon and sulfate concentrations in northeast Greenland. Atmos Chem Phys 15:9681–9692. https://doi.org/10.5194/acp-15-9681-2015

    Article  CAS  Google Scholar 

  • Monks PS, Granier C, Fuzzi S, Stohl A, Williams ML, Akimoto H, Amann M, Baklanov A, Baltensperger U, Bey I, Blake N, Blake RS, Carslaw K, Cooper OR, Dentener F, Fowler D, Fragkou E, Frost GJ, Generoso S, Ginoux P, Grewe V, Guenther A, Hansson HC, Henne S, Hjorth J, Hofzumahaus A, Huntrieser H, Isaksen ISA, Jenkin ME, Kaiser J, Kanakidou M, Klimont Z, Kulmala M, Laj P, Lawrence MG, Lee JD, Liousse C, Maione M, McFiggans G, Metzger A, Mieville A, Moussiopoulos N, Orlando JJ, O'Dowd CD, Palmer PI, Parrish DD, Petzold A, Platt U, Pöschl U, Prévôt ASH, Reeves CE, Reimann S, Rudich Y, Sellegri K, Steinbrecher R, Simpson D, ten Brink H, Theloke J, van der Werf GR, Vautard R, Vestreng V, Vlachokostas C, von Glasow R (2009) Atmospheric composition change - global and regional air quality. Atmos Environ 43:5268–5350

    Article  CAS  Google Scholar 

  • Moretti S, Salmatonidis A, Querol X, Tassone A, Andreoli V, Bencardino M, Pirrone N, Sprovieri F, Naccarato A (2020) Contribution of volcanic and fumarolic emission to the aerosol in marine atmosphere in the central mediterranean sea: results from med-oceanor 2017 cruise campaign. Atmosphere (Basel) 11:149. https://doi.org/10.3390/atmos11020149

    Article  CAS  Google Scholar 

  • Müller T, Henzing JS, De Leeuw G et al (2011) Characterization and intercomparison of aerosol absorption photometers: result of two intercomparison workshops. Atmos Meas Tech 4:245–268. https://doi.org/10.5194/amt-4-245-2011

    Article  Google Scholar 

  • Naccarato A, Elliani R, Cavaliere B, Sindona G, Tagarelli A (2018a) Development of a fast and simple gas chromatographic protocol based on the combined use of alkyl chloroformate and solid phase microextraction for the assay of polyamines in human urine. J Chromatogr A 1549:1–13. https://doi.org/10.1016/j.chroma.2018.03.034

    Article  CAS  Google Scholar 

  • Naccarato A, Tassone A, Moretti S, Elliani R, Sprovieri F, Pirrone N, Tagarelli A (2018b) A green approach for organophosphate ester determination in airborne particulate matter: microwave-assisted extraction using hydroalcoholic mixture coupled with solid-phase microextraction gas chromatography-tandem mass spectrometry. Talanta 189:657–665. https://doi.org/10.1016/j.talanta.2018.07.077

    Article  CAS  Google Scholar 

  • Naccarato A, Tassone A, Cavaliere F, Elliani R, Pirrone N, Sprovieri F, Tagarelli A, Giglio A (2020) Agrochemical treatments as a source of heavy metals and rare earth elements in agricultural soils and bioaccumulation in ground beetles. Sci Total Environ 749:141438. https://doi.org/10.1016/j.scitotenv.2020.141438

    Article  CAS  Google Scholar 

  • Pio C, Cerqueira M, Harrison RM, Nunes T, Mirante F, Alves C, Oliveira C, Sanchez de la Campa A, Artíñano B, Matos M (2011) OC/EC ratio observations in Europe: re-thinking the approach for apportionment between primary and secondary organic carbon. Atmos Environ 45:6121–6132. https://doi.org/10.1016/j.atmosenv.2011.08.045

    Article  CAS  Google Scholar 

  • Putaud J-P, Van Dingenen R, Alastuey A et al (2010) A European aerosol phenomenology – 3: physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos Environ 44:1308–1320. https://doi.org/10.1016/j.atmosenv.2009.12.011

    Article  CAS  Google Scholar 

  • Querol X, Viana M, Alastuey A, Amato F, Moreno T, Castillo S, Pey J, de la Rosa J, Sánchez de la Campa A, Artíñano B, Salvador P, García Dos Santos S, Fernández-Patier R, Moreno-Grau S, Negral L, Minguillón MC, Monfort E, Gil JI, Inza A, Ortega LA, Santamaría JM, Zabalza J (2007) Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos Environ 41:7219–7231. https://doi.org/10.1016/j.atmosenv.2007.05.022

    Article  CAS  Google Scholar 

  • Querol X, Alastuey A, Viana M, Moreno T, Reche C, Minguillón MC, Ripoll A, Pandolfi M, Amato F, Karanasiou A, Pérez N, Pey J, Cusack M, Vázquez R, Plana F, Dall'Osto M, de la Rosa J, Sánchez de la Campa A, Fernández-Camacho R, Rodríguez S, Pio C, Alados-Arboledas L, Titos G, Artíñano B, Salvador P, García Dos Santos S, Fernández Patier R (2013) Variability of carbonaceous aerosols in remote, rural, urban and industrial environments in Spain: implications for air quality policy. Atmos Chem Phys 13:6185–6206. https://doi.org/10.5194/acp-13-6185-2013

    Article  CAS  Google Scholar 

  • Rodríguez S, Querol X, Alastuey A, de la Rosa J (2007) Atmospheric particulate matter and air quality in the Mediterranean: a review. Environ Chem Lett 5:1–7

    Article  Google Scholar 

  • Sandrini S, Fuzzi S, Piazzalunga A, Prati P, Bonasoni P, Cavalli F, Bove MC, Calvello M, Cappelletti D, Colombi C, Contini D, de Gennaro G, di Gilio A, Fermo P, Ferrero L, Gianelle V, Giugliano M, Ielpo P, Lonati G, Marinoni A, Massabò D, Molteni U, Moroni B, Pavese G, Perrino C, Perrone MG, Perrone MR, Putaud JP, Sargolini T, Vecchi R, Gilardoni S (2014) Spatial and seasonal variability of carbonaceous aerosol across Italy. Atmos Environ 99:587–598. https://doi.org/10.1016/j.atmosenv.2014.10.032

    Article  CAS  Google Scholar 

  • Seibert P, Kromp-Kolb H, Baltensperger U, et al (1994) Trajectory analysis of high-Alpine air pollution data. In: Air Pollution Modeling and Its Application: NATO: Challenges of Modern Society. pp 595–596

  • Squizzato S, Cazzaro M, Innocente E, Visin F, Hopke PK, Rampazzo G (2017) Urban air quality in a mid-size city — PM2.5 composition, sources and identification of impact areas: from local to long range contributions. Atmos Res 186:51–62. https://doi.org/10.1016/J.ATMOSRES.2016.11.011

    Article  CAS  Google Scholar 

  • Stroppiana D, Antoninetti M, Brivio PA (2014) Seasonality of MODIS LST over Southern Italy and correlation with land cover, topography and solar radiation. Eur J Remote Sens 47:133–152. https://doi.org/10.5721/EuJRS20144709

    Article  Google Scholar 

  • Tassone A, Moretti S, Martino M, Pirrone N, Sprovieri F, Naccarato A (2020) Modification of the EPA method 1631E for the quantification of total mercury in natural waters. MethodsX 7:100987. https://doi.org/10.1016/j.mex.2020.100987

    Article  Google Scholar 

  • Turpin BJ, Huntzicker JJ (1995) Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmos Environ 29:3527–3544. https://doi.org/10.1016/1352-2310(94)00276-Q

    Article  CAS  Google Scholar 

  • Verma N, Satsangi A, Lakhani A, Kumari KM (2017) Low molecular weight monocarboxylic acids in PM2.5 and PM10: quantification, seasonal variation and source apportionment. Aerosol Air Qual Res 17:485–498. https://doi.org/10.4209/aaqr.2016.05.0183

    Article  CAS  Google Scholar 

  • Washenfelder RA, Attwood AR, Brock CA, Guo H, Xu L, Weber RJ, Ng NL, Allen HM, Ayres BR, Baumann K, Cohen RC, Draper DC, Duffey KC, Edgerton E, Fry JL, Hu WW, Jimenez JL, Palm BB, Romer P, Stone EA, Wooldridge PJ, Brown SS (2015) Biomass burning dominates brown carbon absorption in the rural southeastern United States. Geophys Res Lett 42:653–664. https://doi.org/10.1002/2014GL062444

    Article  CAS  Google Scholar 

  • Weingartner E, Saathoff H, Schnaiter M, Streit N, Bitnar B, Baltensperger U (2003) Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. J Aerosol Sci 34:1445–1463. https://doi.org/10.1016/S0021-8502(03)00359-8

    Article  CAS  Google Scholar 

  • Wu C, Yu JZ (2016) Determination of primary combustion source organic carbon-to-elemental carbon (OC / EC) ratio using ambient OC and EC measurements: secondary OC-EC correlation minimization method. Atmos Chem Phys 16:5453–5465. https://doi.org/10.5194/acp-16-5453-2016

    Article  CAS  Google Scholar 

  • Xiao ZM, Zhang YF, Hong SM, Bi XH, Jiao L, Feng YC, Wang YQ (2011) Estimation of the main factors influencing haze, based on a long-term monitoring campaign in Hangzhou, China. Aerosol Air Qual Res 11:873–882. https://doi.org/10.4209/aaqr.2011.04.0052

    Article  CAS  Google Scholar 

  • Xu J, Wang Q, Deng C, McNeill VF, Fankhauser A, Wang F, Zheng X, Shen J, Huang K, Zhuang G (2017) Insights into the characteristics and sources of primary and secondary organic carbon: high time resolution observation in urban Shanghai. Environ Pollut 2:1–11. https://doi.org/10.1016/j.envpol.2017.10.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The NOAA Air Resources Laboratory is kindly acknowledged for the provision of the HYSPLIT back trajectories and PBL height simulations. The authors would like to acknowledge the Barcelona Supercomputing Center for the provision of the dust concentration profiles from DREAM8b model data.

Funding

This research was funded by the European Commission—H2020—the ERA-PLANET program (www.era-planet.eu; contract no. 689443) within the IGOSP project (www.igosp.eu).

Author information

Authors and Affiliations

Authors

Contributions

Sacha Moretti: conceptualization, methodology, formal analysis, data curation, writing the original draft, and writing — review and editing. Antonella Tassone: investigation, writing the original draft, and writing — review and editing. Virginia Andreoli: investigation. Francesco Carbone: investigation and writing — review and editing. Nicola Pirrone: funding acquisition. Francesca Sprovieri: funding acquisition. Attilio Naccarato: conceptualization, methodology, data curation, writing — review and editing, and supervision.

Corresponding author

Correspondence to Attilio Naccarato.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 9551 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moretti, S., Tassone, A., Andreoli, V. et al. Analytical study on the primary and secondary organic carbon and elemental carbon in the particulate matter at the high-altitude Monte Curcio GAW station, Italy. Environ Sci Pollut Res 28, 60221–60234 (2021). https://doi.org/10.1007/s11356-021-15014-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-15014-x

Keywords

Navigation