Skip to main content
Log in

Influence of post-heat treatment on photocatalytic activity in metal-embedded TiO2 nanofibers

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

With the increasing concerns for environmental pollution, photocatalysts have been attracting attention due to their environmentally friendly characteristics, low cost, and simple processing. Titanium dioxide (TiO2) has been commonly used as a photocatalyst owing to its white pigment, excellent photocatalytic activity and low cost; however, its poor pollutant adsorption properties and high electron-hole recombination ratio limit its practical application. Transition metals such as nickel exhibit excellent electron-trapping capability, lowering the rate of electron-hole recombination and facilitating the generation of oxygen free radicals. One-dimensional nanofibers fabricated by electrospinning methods not only develop mesopores but can also make photocatalytic materials with a relatively high specific surface area, thereby increasing the adsorption of pollutants. In this study, transition metal-embedded TiO2 was fabricated by an electrospinning method, and the influence of post-calcination in a reducing atmosphere on the photocatalytic activity was investigated. The photocatalytic properties were performed by decomposition of Rhodamine B under visible light irradiation using fabricated material. Among the investigated samples, Ni-embedded TiO2 nanofibers showed the fastest decomposition of Rhodamine B under visible light irradiation due to a relatively high number of oxygen vacancies, lower Fermi level, small particle size, well-developed mesopores and relatively high specific surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Ouyang, S. Liu, L. Zhao, L. Cao, S. Jiang and H. Hou, Compos. Commun., 9, 76 (2018).

    Article  Google Scholar 

  2. L. Jiang, Y. Wang and C. Feng, Procedia Eng., 45, 993 (2012).

    Article  CAS  Google Scholar 

  3. M. M. Mahlambi, A. K. Mishra, S. B. Mishra, A. M. Raichur, B. B. Mamba and R. W. Krause, J. Nanomaterials, 2012, Article ID 302046 (2012).

  4. F. Huang, A. Yan and H. Zhao, Semiconductor photocatalysis materials-mechanisms and applicaations, IntechOpen Limited, London (2016).

    Google Scholar 

  5. H. Khojasteh, M. Salavati-Niasari and S. Mortazavi-Derazkola, J. Mater. Sci.: Mater. Electron., 27(4), 3599 (2016).

    CAS  Google Scholar 

  6. M. Manzoor, A. Rafiq, M. Ikram, M. Nafees and S. Ali, Int. Nano Lett., 8(1), 1 (2018).

    Article  Google Scholar 

  7. R. Bashiri, M. M. Norani, C. F. Kait and S. Sufian, Adv. Mater. Res., 925, 248 (2014).

    Article  CAS  Google Scholar 

  8. S. Woo, W. Kim, S. Kim and C. Rhee, Mater. Sci. Eng.: A, 449, 1151 (2007).

    Article  Google Scholar 

  9. G. Nakhate, V. Nikam, K. Kanade, S. Arbuj, B. Kale and J. Baeg, Mater. Chem. Phys., 124(2–3), 976 (2010).

    Article  CAS  Google Scholar 

  10. S. K. Khore, S. R. Kadam, S. D. Naik, B. B. Kale and R. S. Sonawane, New J. Chem., 42(13), 10958 (2018).

    Article  CAS  Google Scholar 

  11. K. Prabakar, T. Takahashi, T. Nezuka, K. Takahashi, T. Nakashima, Y. Kubota and A. Fujishima, Renew. Energy, 33(2), 277 (2008).

    Article  CAS  Google Scholar 

  12. K. Song, X. Han and G. Shao, J. Alloys Compd., 551, 118 (2013).

    Article  CAS  Google Scholar 

  13. T. Sakthivel, K. A. Kumar, J. Senthilselvan and K. Jagannathan, J. Mater. Sci.: Mater. Electron., 29(3), 2228 (2018).

    CAS  Google Scholar 

  14. D. Ding, C. Ning and X. Wang, RSC Adv., 5(116), 95478 (2015).

    Article  Google Scholar 

  15. B. Gao, T. Wang, X. Fan, H. Gong, H. Guo, W. Xia, Y. Feng, X. Huang and J. He, Inorg. Chem. Front., 4(5), 898 (2017).

    Article  CAS  Google Scholar 

  16. S. Buddee, C. Suwanchawalit and S. Wongnawa, Dig. J. Nanomater. Biostruct., 12(3), 829 (2017).

    Google Scholar 

  17. T. Hirakawa and P. V. Kamat, J. Am. Chem. Soc., 127(11), 3928 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. J. Y. Park, K. I. Choi, J. H. Lee, C. H. Hwang, D. Y. Choi and J. W. Lee, Mater. Lett., 97(15), 64 (2013).

    Article  CAS  Google Scholar 

  19. B. Guan, J. Yu, S. Guo, S. Yu and S. Han, Nanoscale Adv., 2, 1352 (2020).

    Article  CAS  Google Scholar 

  20. G. Nagaraj, R. Senthil, R. Boddula and K. Ravichandaran, Curr. Anal. Chem., 17, 279 (2021).

    Article  CAS  Google Scholar 

  21. D. Jing, Y. Zhang and L. Guo, Chem. Phys. Lett., 415(1–3), 74 (2005).

    Article  CAS  Google Scholar 

  22. T. Wang, X. Meng, G. Liu, K. Chang, P. Li, Q. Kang, L. Liu, M. Li, S. Ouyang and J. Ye, J. Mater. Chem. A, 3(18), 9491 (2015).

    Article  CAS  Google Scholar 

  23. R. Nirmala, H. Y. Kim, C. Yi, N. A. Barakat, R. Navamathavan and M. El-Newehy, Int. J. Hydrogen Energy, 37(13), 10036 (2012).

    Article  CAS  Google Scholar 

  24. H. Albetran, Y. Dong and I. M. Low, J. Asian Ceram. Societies, 3(4), 292 (2015).

    Article  Google Scholar 

  25. C. Wang, Y. Tong, Z. Sun, Y. Xin, E. Yan and Z. Huang, Mater. Lett., 61(29), 5125 (2007).

    Article  CAS  Google Scholar 

  26. W. Sigmund, J. Yuh, H. Park, V. Maneeratana, G. Pyrgiotakis, A. Daga, J. Taylor and J. C. Nino, J. Am. Ceram. Soc., 89(2), 395 (2006).

    Article  CAS  Google Scholar 

  27. J. Y. Park and S. S. Kim, Metals Mater. Int., 15(1), 95 (2009).

    Article  CAS  Google Scholar 

  28. I. S. Chronakis, J. Mater. Process. Technol., 167(2–3), 283 (2005).

    Article  CAS  Google Scholar 

  29. S. Aryal, C. K. Kim, K.-W. Kim, M. S. Khil and H. Y. Kim, Mater. Sci. Eng.: C, 28(1), 75 (2008).

    Article  CAS  Google Scholar 

  30. D. Cahyaningsih, A. Taufik and R. Saleh, J. Phys.: Conf. Ser., 1442, 012017 (2020).

    CAS  Google Scholar 

  31. S. Rajeh, A. Barhoumi, A. Mhamdi, G. Leroy, B. Duponchel, M. Amlouk and S. Guermazi, Bull. Mater. Sci., 39, 177 (2016).

    Article  CAS  Google Scholar 

  32. Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto and N. Hamada, Nature, 418, 164 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. B. Ding, C. K. Kim, H. Y. Kim, M. K. Seo and S. J. Park, Fibers Polym., 5(2), 105 (2004).

    Article  CAS  Google Scholar 

  34. J. Zhang, P. Zhou, J. Liu and J. Yu, Phys. Chem. Chem. Phys., 16(38), 20382 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. D. J. Deka, J. Kim, S. Gunduz, M. Aouine, J.-M. M. Millet, A. C. Co and U. S. Ozkan, Appl. Catal. B: Environ., 286, 119917 (2021).

    Article  CAS  Google Scholar 

  36. D. S. Kim, S. J. Han and S.-Y. Kwak, J. Colloid Interface Sci., 316(1), 85 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. S. Chen, Y. Xiao, Y. Wang, Z. Hu, H. Zhao and W. Xie, Nanomaterials, 8(4), 245 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  38. A. Janotti, J. Varley, P. Rinke, N. Umezawa, G. Kresse and C. G. Van de Walle, Phys. Rev. B, 81(8), 085212 (2010).

    Article  Google Scholar 

  39. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang and Y. Li, Nano Lett., 11(7), 3026 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. N. Feng, F. Liu, M. Huang, A. Zheng, Q. Wang, T. Chen, G. Cao, J. Xu, J. Fan and F. Deng, Sci. Rep., 6, 1 (2016).

    Article  CAS  Google Scholar 

  41. A. Lepcha, C. Maccato, A. Mettenbörger, T. Andreu, L. Mayrhofer, M. Walter, S. Olthof, T.-P. Ruoko, A. Klein and M. Moseler, J. Phys. Chem. C, 119, 18835 (2015).

    Article  CAS  Google Scholar 

  42. N.-W. Lee, J.-W. Jung, J.-S. Lee, H.-Y. Jang, I.-D. Kim and W.-H. Ryu, Electrochim. Acta, 263, 417 (2018).

    Article  CAS  Google Scholar 

  43. D. H. Kim, D.-K. Choi, S.-J. Kim and K. S. Lee, Catal. Commun., 9(5), 654 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Wonkwang University in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Wan Ju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HY., Ju, YW. Influence of post-heat treatment on photocatalytic activity in metal-embedded TiO2 nanofibers. Korean J. Chem. Eng. 38, 1522–1528 (2021). https://doi.org/10.1007/s11814-021-0800-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0800-x

Keywords

Navigation