Skip to main content

Advertisement

Log in

One-step molten salt carbonization of tobacco stem for capacitive carbon

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

High-performance carbon materials for supercapacitors were prepared by a one-step molten salt carbonization of tobacco stem in molten carbonate. Physicochemical properties of the as-prepared carbon materials were studied by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and nitrogen adsorption/desorption isotherms, as well as electrochemical properties were measured by tests of cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy. All of the carbon materials possess hierarchically porous structure with rich self-doping of oxygen for introducing pseudocapacitance and high specific surface area for providing sufficient active sites, and exhibit ideal capacitive behavior with high performance which is comparable to that of commercial activated carbon material. Carbon material obtained by molten salt carbonization for 2 h delivers specific capacitance of 225.3 F/g at 0.2 A/g, energy density of 31.2 Wh/kg at 0.2 A/g and power density of 989.5 W/kg at 2 A/g besides acceptable rate capacity and long-term cyclic stability using a three-electrode configuration in 1 mol/L H2SO4 aqueous solution. Moreover, it possesses specific capacitance of 143.5 F/g at 0.2 A/g, energy density of 5.0 Wh/kg at 0.2 A/g and power density of 491.3 W/kg at 2 A/g besides excellent rate capacity using a symmetrical two-electrode configuration in 6 mol/L KOH aqueous solution. The dependence of the capacitive performance on hierarchically porous structure is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Wang, X. Zhang, Z. Li, Y. Ma, L. Ma, Recent progress of biomass-derived carbon materials for supercapacitors. J. Power Sources 451, 227794 (2020)

    Article  CAS  Google Scholar 

  2. Y.Q. Zhao, M. Lu, P.Y. Tao, Y.J. Zhang, X.T. Gong, Z. Yang, G.Q. Zhang, H.L. Li, Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. J. Power Sources 307, 391–400 (2016)

    Article  CAS  Google Scholar 

  3. M. Armand, J.-M. Tarascon, Building better batteries. Nature 451, 652–657 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 321, 651–652 (2008)

    Article  CAS  PubMed  Google Scholar 

  6. F. Cheng, X. Yang, S. Zhang, Boosting the supercapacitor performances of activated carbon with carbon nanomaterials. J. Power Sources 450, 227678 (2020)

    Article  CAS  Google Scholar 

  7. B.H. Lu, Z.A. Xiao, H. Zhu, W. Xiao, W.L. Wu, D.H. Wang, Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates. J. Power Sources 298, 74–82 (2015)

    Article  CAS  Google Scholar 

  8. H. Jin, J. Li, Y. Yuan, J. Wang, J. Lu, S. Wang, Recent progress in biomass-derived electrode materials for high volumetric performance supercapacitors. Adv. Energy Mater. 8, 1801007 (2018)

    Article  CAS  Google Scholar 

  9. L. Suárez, T.A. Centeno, Unravelling the volumetric performance of activated carbons from biomass wastes in supercapacitors. J. Power Sources 448, 227413 (2020)

    Article  CAS  Google Scholar 

  10. H. Chen, Y.C. Guo, F. Wang, G.M. Wang, F. Yu, An activated carbon derived from tobacco waste for use as a supercapacitor electrode material. New Carbon Mater. 32, 592–599 (2017)

    Article  CAS  Google Scholar 

  11. R. Chen, L. Li, Z. Liu, M. Lu, C. Wang, H. Li, W. Ma, S. Wang, Preparation and characterization of activated carbons from tobacco stem by chemical activation. J. Air Waste Manag. 67, 713–724 (2017)

    Article  CAS  Google Scholar 

  12. G.N. Guo, B.B. Yang, Q.M. Zhang, C. Zhang, Porous carbon from tobacco stalk for removal of organic dyes from water. RSC Adv. 9, 33848–33852 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. C.N. Rao, K. Subbarayudu, Y. Vijaya, M.V. Subbaiah, Adsorption of Ni(II) from aqueous solution by activated carbons derived from tobacco stem. Desalin. Water Treat. 54, 3392–3399 (2015)

    Article  CAS  Google Scholar 

  14. X. Huang, M. Li, J. Li, Y. Song, A high-resolution emission inventory of crop burning in fields in China based on MODIS thermal anomalies/fire products. Atmos. Environ. 50, 9–15 (2012)

    Article  CAS  Google Scholar 

  15. Z.S. Zhang, G. Engling, C.Y. Lin, C.C.K. Chou, S.C.C. Lung, S.Y. Chang, S.J. Fan, C.Y. Chan, Y.H. Zhang, Chemical speciation, transport and contribution of biomass burning smoke to ambient aerosol in Guangzhou, a mega city of China. Atmos. Environ. 44, 3187–3195 (2010)

    Article  CAS  Google Scholar 

  16. A.J. Ding, C.B. Fu, X.Q. Yang, J.N. Sun, T. Petaja, V.M. Kerminen, T. Wang, Y. Xie, E. Herrmann, L.F. Zheng, W. Nie, Q. Liu, X.L. Wei, M. Kulmala, Intense atmospheric pollution modifies weather: a case of mixed biomass burning with fossil fuel combustion pollution in eastern China. Atmos. Chem. Phys. 13, 10545–10554 (2013)

    Article  Google Scholar 

  17. R.T. Jiang, M.L. Bell, A comparison of particulate matter from biomass-burning rural and non-biomass-burning urban households in northeastern China. Environ. Health Persp. 116, 907–914 (2008)

    Article  Google Scholar 

  18. A.J. Ragauskas, C.K. Williams, B.H. Davison, G. Britovsek, J. Cairney, C.A. Eckert, W.J. Frederick, J.P. Hallett, D.J. Leak, C.L. Liotta, J.R. Mielenz, R. Murphy, R. Templer, T. Tschaplinski, The path forward for biofuels and biomaterials. Science 311, 484–489 (2006)

    Article  CAS  PubMed  Google Scholar 

  19. A.A. Nunes, A.S. Franca, L.S. Oliveira, Activated carbons from waste biomass: an alternative use for biodiesel production solid residues. Bioresource Technol. 100, 1786–1792 (2009)

    Article  CAS  Google Scholar 

  20. Y. Wang, L. Zhang, H. Hou, W. Xu, G. Duan, S. He, K. Liu, S. Jiang, Recent progress in carbon-based materials for supercapacitor electrodes: a review. J. Mater. Sci. 56, 173–200 (2021)

    Article  CAS  Google Scholar 

  21. Y. Chen, Y. Zhu, Z. Wang, Y. Li, L. Wang, L. Ding, X. Gao, Y. Ma, Y. Guo, Application studies of activated carbon derived from rice husks produced by chemical-thermal process-a review. Adv. Colloid. Interfac. 163, 39–52 (2011)

    Article  CAS  Google Scholar 

  22. J.C. Wang, S. Kaskel, KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22, 23710–23725 (2012)

    Article  CAS  Google Scholar 

  23. B. Hu, K. Wang, L.H. Wu, S.-H. Yu, M. Antonietti, M.-M. Titirici, Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 22, 813–828 (2010)

    Article  CAS  PubMed  Google Scholar 

  24. R. Luque, J.A. Menéndez, A. Arenillas, J. Cot, Microwaveassisted pyrolysis of biomass feedstocks: the way forward? Energy Environ. Sci. 5, 5481–5488 (2012)

    Article  CAS  Google Scholar 

  25. M. Biswal, A. Banerjee, M. Deo, S. Ogale, From dead leaves to high energy density supercapacitors. Energy Environ. Sci. 6, 1249–1259 (2013)

    Article  CAS  Google Scholar 

  26. F.-C. Wu, R.-L. Tseng, C.-C. Hu, C.-C. Wang, Physical and electrochemical characterization of activated carbons prepared from firwoods for supercapacitors. J. Power Sources 138, 351–359 (2004)

    Article  CAS  Google Scholar 

  27. Y. Guo, J. Qi, Y. Jiang, S. Yang, Z. Wang, H. Xu, Performance of electrical double layer capacitors with porous carbons derived from rice husk. Mater. Chem. Phys. 80, 704–709 (2003)

    Article  CAS  Google Scholar 

  28. J. Zhang, Z. Zhong, D. Shen, J. Zhao, H. Zhang, M. Yang, W. Li, Preparation of bamboo-based activated carbon and its application in direct carbon fuel cells. Energy Fuel 25, 2187–2193 (2011)

    Article  CAS  Google Scholar 

  29. A. Khan, R.A. Senthil, J. Pan, S. Osman, Y. Sun, X. Shu, A new biomass derived rod-like porous carbon from tea-waste as inexpensive and sustainable energy material for advanced supercapacitor application. Electrochim. Acta 335, 135588 (2019)

    Article  CAS  Google Scholar 

  30. H.Y. Yin, B.H. Lu, Y. Xu, D.Y. Tang, X.H. Mao, W. Xiao, D.H. Wang, A.N. Alshawabkeh, Harvesting capacitive carbon by carbonization of waste biomass in molten salts. Environ. Sci. Technol. 48, 8101–8108 (2014)

    Article  CAS  PubMed  Google Scholar 

  31. H.Y. Yin, X.H. Mao, D.Y. Tang, W. Xiao, L. Xing, H. Zhu, D. Wang, D.R. Sadoway, Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis. Energy Environ. Sci. 6, 1538–1545 (2013)

    Article  CAS  Google Scholar 

  32. X.F. Liu, M. Antonietti, Molten salt activation for synthesis of porous carbon nanostructures and carbon sheets. Carbon 69, 460–466 (2014)

    Article  CAS  Google Scholar 

  33. S. Yang, B. Zhang, C. Ge, X. Dong, X. Liu, Y. Fang, H. Wang, Z. Li, Close-packed mesoporous carbon polyhedrons derived from colloidal carbon microspheres for electrochemical energy storage applications. RSC Adv. 2, 10310–10315 (2012)

    Article  CAS  Google Scholar 

  34. X. Liu, M. Antonietti, Moderating black powder chemistry for the synthesis of doped and highly porous graphene nanoplatelets and their use in electrocatalysis. Adv. Mater. 25, 6284–6290 (2013)

    Article  CAS  PubMed  Google Scholar 

  35. S. Dutta, A. Bhaumik, K.C.-W. Wu, Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ. Sci. 7, 3574–3592 (2014)

    Article  CAS  Google Scholar 

  36. D. Carriazo, F. Picó, M.C. Gutiérrez, F. Rubio, J.M. Rojoa, F. del Monte, Block-copolymer assisted synthesis of hierarchical carbon monoliths suitable as supercapacitor electrodes. J. Mater. Chem. 20, 773–780 (2010)

    Article  CAS  Google Scholar 

  37. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006)

    Article  CAS  PubMed  Google Scholar 

  38. L. Hao, X.L. Li, L.J. Zhi, Carbonaceous electrode materials for supercapacitors. Adv. Mater. 25, 3899–3904 (2013)

    Article  CAS  PubMed  Google Scholar 

  39. M. Inagaki, H. Konno, O. Tanaike, Carbon materials for electrochemical capacitors. J. Power Sources 195, 7880–7903 (2010)

    Article  CAS  Google Scholar 

  40. X. Cheng, D. Tang, D. Tang, H. Zhu, D. Wang, Cobalt powder production by electro-reduction of Co3O4 granules in molten carbonates using an inert anode. J. Electrochem. Soc. 162, E68–E72 (2015)

    Article  CAS  Google Scholar 

  41. X. Cheng, H. Yin, D. Wang, Rearrangement of oxide scale on Ni-11Fe-10Cu alloy under anodic polarization in molten Na2CO3-K2CO3. Corros. Sci. 141, 168–174 (2018)

    Article  CAS  Google Scholar 

  42. P. Yang, W. Mai, Flexible solid-state electrochemical supercapacitors. Nano Energy 8, 274–290 (2014)

    Article  CAS  Google Scholar 

  43. L. Zhang, F. Zhang, X. Yang, K. Leng, Y. Huang, Y. Chen, High-performance supercapacitor electrode materials prepared from various pollens. Small 9, 1342–1347 (2013)

    Article  CAS  PubMed  Google Scholar 

  44. R.J. Nemanich, S.A. Solin, First- and second-order Raman scattering from finite-size crystals of graphite. Phys. Rev. B 20, 392–401 (1979)

    Article  CAS  Google Scholar 

  45. L. Wei, M. Sevilla, A.B. Fuertes, R. Mokaya, G. Yushin, Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv. Energy Mater. 1, 356–361 (2011)

    Article  CAS  Google Scholar 

  46. F. Su, C.K. Poh, J.S. Chen, G. Xu, D. Wang, Q. Li, J. Lin, X.W. Lou, Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ. Sci. 4, 717–724 (2011)

    Article  CAS  Google Scholar 

  47. X. Liu, C. Ma, J. Li, B. Zielinska, R.J. Kalenczuk, X. Chen, P.K. Chu, T. Tang, E. Mijowska, Biomass-derived robust three-dimensional porous carbon for high volumetric performance supercapacitors. J. Power Sources 412, 1–9 (2019)

    Article  CAS  Google Scholar 

  48. Z. Qiu, Y. Wang, X. Bi, T. Zhou, J. Zhou, J. Zhao, Z. Miao, W. Yi, P. Fu, S. Zhuo, Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors. J. Power Sources 376, 82–90 (2018)

    Article  CAS  Google Scholar 

  49. C. Young, J. Lin, J. Wang, B. Ding, X. Zhang, S.M. Alshehri, T. Ahamad, R.R. Salunkhe, S.A. Hossain, J.H. Khan, Y. Ide, J. Kim, J. Henzie, K.C. Wu, N. Kobayashi, Y. Yamauchi, Significant effect of pore sizes on energy storage in nanoporous carbon supercapacitors. Chem. Eur. J. 24, 6127–6132 (2018)

    Article  CAS  PubMed  Google Scholar 

  50. X. Zou, L. Ji, H.-Y. Hsu, K. Zheng, Z. Pang, X. Lu, Designed synthesis of SiC nanowire-derived carbon with dual-scale nanostructures for supercapacitor applications. J. Mater. Chem. A 6, 12724–12732 (2018)

    Article  CAS  Google Scholar 

  51. J. Yang, K.-Q. Qiu, Preparation of activated carbon by chemical activation under vacuum. Environ. Sci. Technol. 43, 3385–3390 (2009)

    Article  CAS  Google Scholar 

  52. B. Lu, J. Zhou, Y. Song, H. Wang, W. Xiao, D. Wang, Molten-salt treatment of waste biomass for preparation of carbon with enhanced capacitive properties and electrocatalytic activity towards oxygen reduction. Faraday discuss. 190, 147–159 (2016)

    Article  CAS  PubMed  Google Scholar 

  53. B. Lu, L. Hu, H. Yin, W. Xiao, D. Wang, One-step molten salt carbonization (MSC) of firwood biomass for capacitive carbon. RSC Adv. 6, 106485–106490 (2016)

    Article  CAS  Google Scholar 

  54. F. Sun, D. Wu, J. Gao, T. Pei, Y. Chen, K. Wang, H. Yang, G. Zhao, Graphitic porous carbon with multiple structural merits for high-performance organic supercapacitor. J. Power Sources 477, 228759 (2020)

    Article  CAS  Google Scholar 

  55. L.Z. Fan, S. Qiao, W. Song, M. Wu, X. He, X. Qu, Effects of the functional groups on the electrochemical properties of ordered porous carbon for supercapacitors. Electrochim. Acta 105, 299–304 (2013)

    Article  CAS  Google Scholar 

  56. L. Qie, W. Chen, H. Xu, X. Xiong, Y. Jiang, F. Zou, X. Hu, Y. Xin, Z. Zhang, Y. Huang, Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ. Sci. 6, 2497–2504 (2013)

    Article  CAS  Google Scholar 

  57. Y.S. Yun, M.H. Park, S.J. Hong, M.E. Lee, Y.W. Park, H.-J. Jin, Hierarchically porous carbon nanosheets from waste coffee grounds for supercapacitors. ACS Appl. Mater. Inter. 7, 3684–3690 (2015)

    Article  CAS  Google Scholar 

  58. W. Chen, H. Zhang, Y. Huang, W. Wang, A fish scale based hierarchical lamellar porous carbon material obtained using a natural template for high performance electrochemical capacitors. J. Mater. Chem. 20, 4773–4775 (2010)

    Article  CAS  Google Scholar 

  59. C. Zeng, P. Guo, W. Wu, Electrochemical impedance of two-phase Ni–Ti alloys during corrosion in eutectic (0.62Li, 0.38K)2CO3 at 650 °C. Electrochim. Acta 49, 2271–2277 (2004)

    Article  CAS  Google Scholar 

  60. V. Subramanian, C. Luo, A.M. Stephan, K.S. Nahm, S. Thomas, B.Q. Wei, Supercapacitors from activated carbon derived from banana fibers. J. Phys. Chem. C 111, 7527–7531 (2007)

    Article  CAS  Google Scholar 

  61. E. Taer, M. Deraman, I.A. Talib, A. Awitdrus, S.A. Hashmi, A.A. Umar, Preparation of a highly porous binderless activated carbon monolith from rubber wood sawdust by a multi-step activation process for application in supercapacitors. Int. J. Electrochem. Sci. 6, 3301–3315 (2011)

    CAS  Google Scholar 

  62. A. Thambidurai, J.K. Lourdusamy, J.V. John, S. Ganesan, Preparation and electrochemical behaviour of biomass based porous carbons as electrodes for supercapacitors—a comparative investigation. Korean J. Chem. Eng. 31, 268–275 (2014)

    Article  CAS  Google Scholar 

  63. C.C. Huang, T. Sun, D. Hulicova-Jurcakova, Wide electrochemical window of supercapacitors from coffee bean-derived phosphorus-rich carbons. Chemsuschem 6, 2330–2339 (2013)

    Article  CAS  PubMed  Google Scholar 

  64. D. Kalpana, S.H. Cho, S.B. Lee, Y.S. Lee, R. Misra, N.G. Renganathan, Recycled waste paper-a new source of raw material for electric double-layer capacitors. J. Power Sources 190, 587–591 (2009)

    Article  CAS  Google Scholar 

  65. C.C. Hu, C.C. Wang, F.C. Wu, R.L. Tseng, Characterization of pistachio shell-derived carbons activated by a combination of KOH and CO2 for electric double-layer capacitors. Electrochim. Acta 52, 2498–2505 (2007)

    Article  CAS  Google Scholar 

  66. K.Y. Perez-Salcedo, S. Ruan, J. Su, X. Shi, A.M. Kannan, B. Escobar, Seaweed-derived KOH activated biocarbon for electrocatalytic oxygen reduction and supercapacitor applications. J. Porous Mat. 27, 959–969 (2020)

    Article  CAS  Google Scholar 

  67. L.Y. Qin, Z.W. Hou, S. Lu, S. Liu, Z.Y. Liu, E.C. Jiang, Porous carbon derived from pine nut shell prepared by steam activation for supercapacitor electrode material. Int. J. Electrochem. Sci. 14, 8907–8918 (2019)

    Article  CAS  Google Scholar 

  68. A. Sanchez-Sanchez, M.T. Izquierdo, J. Ghanbaja, G. Medjandi, S. Mathieu, A. Celzard, V. Fierro, Excellent electrochemical performances of nanocast ordered mesoporous carbons based on tannin-related polyphenols as supercapacitor electrodes. J. Power Sources 344, 15–24 (2017)

    Article  CAS  Google Scholar 

  69. T. Ramesh, N. Rajalakshmi, K.S. Dhathathreyan, L.R.G. Reddy, Hierarchical porous carbon microfibers derived from tamarind seed coat for high-energy supercapacitor application. ACS Omega 3, 12832–12840 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. A. Bello, N. Manyala, F. Barzegar, A.A. Khaleed, D.Y. Momodu, J.K. Dangbegnon, Renewable pine cone biomass derived carbon materials for supercapacitor application. RSC Adv. 6, 1800–1809 (2016)

    Article  CAS  Google Scholar 

  71. P. Hao, Z.H. Zhao, J. Tian, H.D. Li, Y.H. Sang, G.W. Yu, H.Q. Cai, H. Liu, C.P. Wong, A. Umar, Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6, 12120–12129 (2014)

    Article  CAS  PubMed  Google Scholar 

  72. W.H. Qu, Y.Y. Xu, A.H. Lu, X.Q. Zhang, W.C. Li, Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes. Bioresource Technol. 189, 285–291 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Program of the Scientific Research Foundation of the Education Bureau of Hubei Province, China (Grant No. D20181901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Cheng, X. & Zhang, S. One-step molten salt carbonization of tobacco stem for capacitive carbon. J Porous Mater 28, 1629–1642 (2021). https://doi.org/10.1007/s10934-021-01108-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01108-x

Keywords

Navigation