Skip to main content
Log in

Different population size change and migration histories created genetic diversity of three oaks in Tokai region, central Japan

  • Regular Paper – Taxonomy/Phylogenetics/Evolutionary Biology
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

To understand genetic diversity in focal species, it is important to consider the possibility of speciation with gene flow, especially in species with porous genomes such as oaks. We studied genetic diversity and structure in three oaks, Quercus mongolica var. mongolicoides (QM), Q. mongolica var. crispula (QC) and Q. serrata (QS), growing in the Tokai region, central Japan. QM is semi-endemic to the region while the others are common taxa. We also conducted demographic modeling to infer their population size change and migration histories using an approximate Bayesian computation (ABC) approach. The three taxa showed distinct genetic structures but there was genetic admixture among the taxa, especially between QM and QC. ABC analysis of population size change revealed that the population size of QM was stable during and after the last glacial period, while QC and QS showed population expansion after the last glacial maximum. ABC analysis of population divergence and migration revealed that continuous gene flow between QM and QC after their divergence was supported, while between QM and QS, and between QC and QS, secondary contact after sufficient isolation was supported. These historical migration patterns among the three taxa indicate that QM and QC are currently in the early stage or gray zone of speciation, whereas speciation of the other two taxon pairs is considered to have almost been established. Observed gene flow patterns and strength between QM and QC, and between QM and QS, were explained by both flowering patterns and historical distributions, but those between QC and QS were not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aizawa M, Maekawa K, Mochizuki H, Saito H, Harada K, Kadomatsu M, Iizuka K, Ohkubo T (2018) Unveiling the origin of Quercus serrata subsp. mongolicoides found in Honshu, Japan, by using genetic and morphological analyses. Plant Species Biol 33:174–190

    Article  Google Scholar 

  • Aizawa M, Maekawa K, Mochizuki H, Iizuka K (2021) Taxonomic revision of Quercus serrata subsp. mongolicoides. Acta Phytotax Geobot. https://doi.org/10.18942/apg.202017

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Beaumont MA (2010) Approximate Bayesian computation in evolution and ecology. Annu Rev Ecol Evol Syst 41:379–405

    Article  Google Scholar 

  • Blum MGB, François O (2010) Non-linear regression models for approximate Bayesian computation. Stat Comput 20:63–73

    Article  Google Scholar 

  • Burge DO, Parker VT, Mulligan M, Sork VL (2019) Influence of a climatic gradient on genetic exchange between two oak species. Am J Bot 106:864–878

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Lu R, Zhu S, Tamaki I, Qiu Y (2017) Population structure and historical demography of Dipteronia dyeriana (Sapindaceae), an extremely narrow palaeoendemic plant from China: implications for conservation in a biodiversity hotspot. Heredity 119:95–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook SR, Gelman A, Rubin DB (2006) Validation of software for Bayesian models using posterior quantiles. J Comput Graph Stat 15:675–692

    Article  Google Scholar 

  • Csilléry K, Francois O, Blum MGB (2012) abc: an R package for approximate Bayesian computation (ABC). Methods Ecol Evol 3:475–479

    Article  Google Scholar 

  • Damschen EI, Harrison S, Ackerly DD, Fernandez-Going BM, Anacker BL (2012) Endemic plant communities on special soils: early victims or hardy survivors of climate change? J Ecol 100:1122–1130

    Article  Google Scholar 

  • Eaton DAR, Hipp AL, Gonzalez-Rodriguez A, Cavender-Bares J (2015) Historical introgression among the American live oaks and the comparative nature of tests for introgression. Evolution 69:2587–2601

    Article  CAS  PubMed  Google Scholar 

  • Estoup A, Jarne P, Cornuet J-M (2002) Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol Ecol 11:1591–1604

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Foll M (2011) fastsimcoal: a continuous-time coalescent simulator of genomic diversity under arbitrarily complex scenarios. Bioinformatics 27:1332–1334

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Excoffier L, Estoup A, Cornuet J-M (2005) Bayesian analysis of an admixture model with mutations and arbitrarily linked markers. Genetics 169:1727–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Excoffier L, Dupanloup I, Huerta-Sanchez E, Sousa VC, Foll M (2013) Robust demographic inference from genomic and SNP data. PLoS Genet 9:e1003905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gailing O, Curtu AL (2014) Inter specific gene flow and maintenance of species integrity in oaks. Ann for Res 57:5–18

    Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (2014) Bayesian data analysis, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Goudet J (2005) HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol Ecol Notes 5:184–186

    Article  Google Scholar 

  • Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD (2009) Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet 5:e10000695

    Article  CAS  Google Scholar 

  • Harrison S, Viers JH, Thorne JH, Grace JB (2008) Favorable environments and the persistence of naturally rare species. Conserv Lett 1:65–74

    Article  Google Scholar 

  • Hashizume H, Suo Z, Lee JH, Yamamoto F (1994) Fundamental studies on the breeding of Quercus species (I) flowering, pollination and seed bearing by artificial pollination. Trans Jpn for Soc 105:321–324 (In Japanese)

    Google Scholar 

  • He Z, Li X, Yang M, Wang X, Zhong C, Duke NC, Wu C-I, Shi S (2019) Speciation with gene flow via cycles of isolation and migration: insights from multiple mangrove taxa. Natl Sci Rev 6:275–288

    Article  CAS  PubMed  Google Scholar 

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638

    CAS  PubMed  Google Scholar 

  • Hey J (2010) Isolation with migration model for more than two populations. Mol Biol Evol 27:905–920

    Article  CAS  PubMed  Google Scholar 

  • Hiroki S (2017) A new scientific name proposed for a unique deciduous Quercus in Chubu and Kanto districts, Japan. J Phytogeogr Taxon 64:73–76

    Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    Article  PubMed  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  PubMed  PubMed Central  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  • Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  PubMed  Google Scholar 

  • Kim BY, Wei X, Fitz-Gibbon SI, Lohmueller KE, Ortego J, Gugger PF, Sork VL (2018) RADseq data reveal ancient, but not pervasive, introgression between Californian tree and scrub oak species (Quercus sect. Quercus: Fagaceae). Mol Ecol 27:4556–4571

    Article  CAS  PubMed  Google Scholar 

  • Koono K, Nagasaka K, Orita H, Eiga S, Kubota G (1991) Acorn production in intra- and interspecific crosses and inheritance of isozymes in oaks. Bull for Tree Breed Inst 9:15–36 (In Japanese with English abstract)

    Google Scholar 

  • Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Hashizume H, Yamamoto F (1996) Variations in the flowering time, pollen morphology and fertility of Quercus dentata Thunb., Q. serrata Thunb., Q. mongolica Fischer var. grosseserrata Rehder et Wilson and their intermediate types. J Jpn for Soc 78:452–456 (In Japanese with English abstract)

    Google Scholar 

  • Lepais O, Gerber S (2011) Reproductive patterns shape introgression dynamics and species succession within the European white oak species complex. Evolution 65:156–170

    Article  PubMed  Google Scholar 

  • Leroy T, Roux C, Villate L, Bodenes C, Romiguier J, Paiva JAP, Dossat C, Aury J-M, Plomion C, Kremer A (2017) Extensive recent secondary contacts between four European white oak species. New Phytol 214:865–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lexer C, Widmer A (2008) The genic view of plant speciation: recent progress and emerging questions. Philos Trans R Soc B 363:3023–3036

    Article  Google Scholar 

  • Lu R-S, Chen Y, Tamaki I, Sakaguchi S, Ding Y-Q, Takahashi D, Li P, Isaji Y, Chen J, Qiu Y-X (2020) Pre-quaternary diversification and glacial demographic expansions of Cardiocrinum (Liliaceae) in temperate forest biomes of Sino-Japanese Floristic Region. Mol Phylogenet Evol 143:106693

    Article  PubMed  Google Scholar 

  • Mayr E (1963) Animal species and evolution. Belknap Press, Cambridge

    Book  Google Scholar 

  • Mochizuki H, Aizawa M, Nakayama C, Iizuka K, Ohkubo T (2013) Comparison of species characteristics of Quercus serrata subsp. mongolicoides with those of Q. mongolica var. grosseserrata and Q. serrata in Mt. Takahara, northern Kanto district. J Phytogeogr Taxon 61:31–43 (In Japanese with English abstract)

    Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagamitsu T, Shimizu H, Aizawa M, Nakanishi A (2019a) An admixture of Quercus dentata in the coastal ecotype of Q. mongolica var. crispula in northern Hokkaido and genetic and environmental effects on their traits. J Plant Res 132:211–222

    Article  PubMed  Google Scholar 

  • Nagamitsu T, Uchiyama K, Izuno A, Shimizu H, Nakanishi A (2019b) Environment-dependent introgression from Quercus dentata to a coastal ecotype of Quercus mongolica var. crispula in northern Japan. New Phytol 226:1018–1028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proceed Natl Acad Sci 70:3321–3323

    Article  CAS  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170

    Article  CAS  PubMed  Google Scholar 

  • Nosil P (2008) Speciation with gene flow could be common. Mol Ecol 17:2103–2106

    Article  PubMed  Google Scholar 

  • Ohba H (2006) Fagaceae. In: Iwatsuki K, Boufford DE, Ohba H (eds) Flora of Japan, vol 2a. Kodansha Scientific, Tokyo, pp 42–60

    Google Scholar 

  • Ohsawa T, Saito Y, Ide Y (2011) Multiple elevational patterns of nuclear genetic variations in oak populations elucidated by grouping populations with chloroplast markers. Scand J for Res 26:305–318

    Article  Google Scholar 

  • Onosato K, Shitara T, Matsumoto A, Matsuo A, Suyama Y, Tsumura Y (2021) Contact zone of two different chloroplast lineages and genetic guidelines for seed transfer in Quercus serrata and Quercus crispula. Plant Species Biol 36:72–83

    Article  Google Scholar 

  • Ortego J, Gugger PF, Sork V (2018) Genomic data reveal cryptic lineage diversification and introgression in Californian golden cup oaks (section Protobalanus). New Phytol 218:804–818

    Article  PubMed  Google Scholar 

  • Paradis E (2010) pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420

    Article  CAS  PubMed  Google Scholar 

  • Paradis E, Schliep K (2019) ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526–528

    Article  CAS  PubMed  Google Scholar 

  • Petit RJ, Bodenes C, Ducousso A, Roussel G, Kremer A (2003) Hybridization as a mechanism of invasion in oaks. New Phytol 161:151–164

    Article  CAS  Google Scholar 

  • Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6:7–11

    Google Scholar 

  • Popovic I, Matias AMA, Bierne N, Riginos C (2020) Twin introduction by independent invader mussel lineages are both associated with recent admixture with a native congener in Australia. Evol Appl 13:515–532

    Article  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pudlo P, Marin J-M, Estoup A, Cornuet J-M, Gautier M, Robert CP (2016) Reliable ABC model choice via random forests. Bioinformatics 32:859–866

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rougemont Q, Bernatchez L (2018) The demographic history of Atlantic salmon (Salmo salar) across its distribution range reconstructed from approximate Bayesian computations. Evolution 76:1261–1277

    Article  Google Scholar 

  • Rougemont Q, Gagnaire P-A, Perrier C, Genthon C, Besnard A-L, Launey S, Evanno G (2017) Inferring the demographic history underlying parallel genomic divergence among pairs of parasitic and nonparasitic lamprey ecotypes. Mol Ecol 26:142–162

    Article  CAS  PubMed  Google Scholar 

  • Rougeux C, Bernatchez L, Gagnaire P-A (2020) Modeling the multiple facets of speciation-with-gene-flow toward inferring the divergence history of lake whitefish species pairs (Coregonus clupeaformis). Genome Biol Evol 9:2057–2074

    Article  Google Scholar 

  • Roux C, Fraïsse C, Romiguier J, Anciaux Y, Galtier N, Bierne N (2016) Shedding light on the grey zone of speciation along a continuum of genomic divergence. PLOS Biol 14:e2000234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saeki I, Murakami N (2009) Chloroplast DNA phylogeography of the endangered Japanese red maple (Acer pycnanthum): the spatial configuration of wetlands shapes genetic diversity. Divers Distrib 15:917–927

    Article  Google Scholar 

  • Sasaki T, Sugai T, Yanagida M, Morita Y, Furusawa A, Fujiwara O, Moriya T, Nakagawa T, Miyagi T (2006) Reconstruction of depositional environment and Paleoclimate changes from a small basin deposit during the past 300,000 years, central Japan. Quat Res 45:275–286 (In Japanese with English abstract)

    Article  Google Scholar 

  • Senjo M, Kimura K, Watano Y, Ueda K, Shimizu T (1999) Extensive mitochondrial introgression from Pinus pumila to P. parviflora var. pentaphylla (Pinaceae). J Plant Res 112:97–105

    Article  CAS  Google Scholar 

  • Setsuko S, Sugai K, Tamaki I, Takayama K, Kato H, Yoshimaru H (2020) Genetic diversity, structure, and demography of Pandanus boninensis (Pandanaceae) with sea drifted seeds, endemic to the Ogasawara Islands of Japan: comparison between young and old islands. Mol Ecol 29:1050–1068

    Article  PubMed  Google Scholar 

  • Shimizu H, Kikuchi K, Yamada K (1995) Local variation of bud number on axillary buds of bud-scales pf Quercus dentata in coastal forest along Japan sea of Hokkaido. Trans Meet Hokkaido Branch Jpn for Soc 43:140–142 (In Japanese)

    Google Scholar 

  • Takezaki N, Nei M (1996) Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144:389–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamaki I (2019) Distributions of Quercus crispula var. mongolicoides in the Tokai region, Japan, especially in the Western part of the Kiso river. Gifu Acad For Scie Culture Annu Rept 2:12–13 (In Japanese)

    Google Scholar 

  • Tamaki I, Okada M (2014) Genetic admixing of two evergreen oaks, Quercus acuta and Q. sessilifolia (subgenus Cyclobalanopsis), is the result of interspecific introgressive hybridization. Tree Genet Genomes 10:989–999

    Article  Google Scholar 

  • Tamaki I, Yamada Y (2020) Environmental pressure rather than ongoing hybridization is responsible for an altitudinal cline in the morphologies of two oaks. J Plant Ecol 13:413–422

    Article  Google Scholar 

  • Tochigi K, Shuri K, Kikuchi S, Naoe S, Koike S, Nagamitsu T (2021) Phenological shift along an elevational gradient and dispersal of pollen and seeds maintain a hybrid zone between two cherry tree species. Plant Species Biol 36:230–245

    Article  Google Scholar 

  • Todesco M, Pascual M, Owens GL, Ostevik KL, Moyers BT, Hübner S, Heredia SM, Hahn MA, Caseys C, Bock DG, Rieseberg LH (2016) Hybridization and extinction. Evol Appl 9:892–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng S-P, Li S-H, Hsieh C-H, Wang H-Y, Lin S-M (2014) Influence of gene flow on divergence dating—implications for the speciation history of Takydromus grass lizards. Mol Ecol 23:4770–4784

    Article  PubMed  Google Scholar 

  • Ueno S, Tsumura Y (2008) Development of ten microsatellite markers for Quercus mongolica var. crispula by database mining. Conserv Genet 9:1083–1085

    Article  CAS  Google Scholar 

  • Ueno S, Taguchi Y, Tsumura Y (2008) Microsatellite markers derived from Quercus mongolica var. crispula (Fagaceae) inner bark expressed sequence tags. Genes Genet Syst 83:179–187

    Article  CAS  PubMed  Google Scholar 

  • Wang J (2017) The computer program STRUCTURE for assigning individuals to populations: easy to use but easier to misuse. Mol Ecol Resour 17:981–990

    Article  CAS  PubMed  Google Scholar 

  • Wegmann D, Excoffier L (2010) Bayesian inference of the demographic history of chimpanzees. Mol Biol Evol 27:1425–1435

    Article  CAS  PubMed  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, He Z, Shi S, Wu C-I (2017) Can genomic data alone tell us whether speciation happened with gene flow? Mol Ecol 26:2845–2849

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y-F, Liao W-J, Petit RJ, Zhang D-Y (2011) Geographic variation in the structure of oak hybrid zones provides insights into the dynamics of speciation. Mol Ecol 20:4995–5011

    Article  PubMed  Google Scholar 

  • Zeng Y-F, Wang W-T, Liao W-J, Wang H-F, Zhang D-Y (2015) Multiple glacial refugia for cool-temperate deciduous trees in northern East Asia: the Mongolian oak as a case study. Mol Ecol 24:5676–5691

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ryuki Hatanaka, Shunsuke Iio, Ayako Kanazashi, Shunsuke Serizawa, Hideo Tabata, Tetsuya Yamada and Yae Yamada for their help in providing information about distribution sites and/or sample collection in the field. We thank Mineaki Aizawa for sharing information about the study species. We also thank anonymous reviewers for their helpful comments on the previous manuscript.

Funding

We have no funds.

Author information

Authors and Affiliations

Authors

Contributions

IT and TOB conceived global design. IT, TOB, TOH, YS and YI sampled materials. IT, TOH, AM contributed to experiments. IT analyzed data. IT led the writing and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ichiro Tamaki.

Ethics declarations

Conflict of interest

We have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 850 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamaki, I., Obora, T., Ohsawa, T. et al. Different population size change and migration histories created genetic diversity of three oaks in Tokai region, central Japan. J Plant Res 134, 933–946 (2021). https://doi.org/10.1007/s10265-021-01323-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-021-01323-2

Keywords

Navigation