Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Streamlined access to end-functionalized thermoresponsive polymers via a combination of bulk RAFT polymerization and quasi solvent-free Passerini three-component reaction

Abstract

This research achieves a streamlined synthesis of end-functionalized thermoresponsive polymers via the combination of bulk reversible addition–fragmentation chain-transfer (RAFT) polymerization and quasi solvent-free Passerini three-component reaction (3CR) for the modification of chain-end groups. The RAFT polymerization of poly(ethylene glycol) methyl ether acrylate (mPEGA) and di(ethylene glycol)ethyl ether acrylate (DEGA) initiated by aldehydes featuring chain transfer agents proceeded under solvent-free conditions to afford aldehyde end-functionalized P(mPEGA-co-DEGA)s with the target molecular weight and moderate polydispersity index (Đ) value of ~1.4. Furthermore, the obtained aldehyde end-functionalized P(mPEGA-co-DEGA) was subjected to Passerini-3CR under quasi solvent-free conditions, which proceeded with >80% aldehyde conversion to afford P(mPEGA-co-DEGA) end-functionalized with α-acyloxy amides. The resulting α-acyloxy amide end-functionalized P(mPEGA-co-DEGA) showed critical solution temperature behaviors in water different from the parental polymer. In addition, the bulk RAFT polymerization and Passerini chain-end functionalization processes were combined in a one-pot process to provide a streamlined protocol that enables easy access to end-functionalized thermoresponsive polymers within 72 h with minimal use of solvents and reactants.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Seuring J, Agarwal S. Polymers with upper critical solution temperature in aqueous solution. Macromol Rapid Commun. 2012;33:1898–920.

    Article  CAS  Google Scholar 

  2. Roy D, Brooks WLA, Sumerlin BS. New directions in thermoresponsive polymers. Chem Soc Rev. 2013;42:7214–43.

    Article  CAS  Google Scholar 

  3. Cobo I, Li M, Sumerlin BS, Perrier S. Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. Nature Materials. 2015;14:143–59.

    Article  CAS  Google Scholar 

  4. Cook MT, Haddow P, Kirton SB, McAuley WJ. Polymers exhibiting lower critical solution temperatures as a route to thermoreversible gelators for healthcare. Adv Funct Mater. 2020;31:2008123.

    Article  Google Scholar 

  5. Gil ES, Hudson SM. Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci. 2004;29:1173–222.

    Article  CAS  Google Scholar 

  6. Dimitrov I, Trzebicka B, Müller AHE, Dworak A, Tsvetanov CB. Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog Polym Sci. 2007;32:1275–343.

    Article  CAS  Google Scholar 

  7. Liu R, Fraylich M, Saunders BR. Thermoresponsive copolymers: from fundamental studies to applications. Colloid Polym Sci. 2009;287:627–43.

    Article  CAS  Google Scholar 

  8. Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Emerging applications of stimuli-responsive polymer materials. Nat Mater. 2010;9:101–13.

    Article  Google Scholar 

  9. Liu F, Urban MW. Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci. 2010;35:3–23.

    Article  CAS  Google Scholar 

  10. Ward MA, Georgiou TK. Thermoresponsive polymers for biomedical applications. Polymers. 2011;3:1215–42.

    Article  CAS  Google Scholar 

  11. Tong Z, Zeng F, Zheng X, Sato T. Inverse molecular weight dependence of cloud points for aqueous poly(N-isopropylacrylamide) solutions. Macromolecules. 1999;32:4488–90.

    Article  CAS  Google Scholar 

  12. Lutz J-F. Polymerization of oligo(ethylene glycol) (meth)acrylates: toward new generations of smart biocompatible materials. J Polym Sci, Part A: Polym Chem. 2008;46:3459–70.

    Article  CAS  Google Scholar 

  13. Ishizone T, Seki A, Hagiwara M, Han S, Yokoyama H, Oyane A, et al. Anionic polymerizations of oligo(ethylene glycol) Alkyl ether methacrylates: effect of side chain length and ω-alkyl group of side chain on cloud point in water. Macromolecules. 2008;41:2963–7.

    Article  CAS  Google Scholar 

  14. Hoogenboom R, Thijs HML, Jochems MJHC, van Lankvelt BM, Fijten MWM, Schubert US. Tuning the LCST of poly(2-oxazoline)s by varying composition and molecular weight: alternatives to poly(N-isopropylacrylamide)? Chem Commun. 2008, 5758–60.

  15. Zhang N, Luxenhofer R, Jordan R. Thermoresponsive poly(2-oxazoline) molecular brushes by living ionic polymerization: kinetic investigations of pendant chain grafting and cloud point modulation by backbone and side chain length variation. Macromol Chem Phys. 2012;213:973–81.

    Article  CAS  Google Scholar 

  16. Ieong NS, Hasan M, Phillips DJ, Saaka Y, O’Reilly RK, Gibson MI. Polymers with molecular weight dependent LCSTs are essential for cooperative behaviour. Polym Chem. 2012;3:794–9.

    Article  CAS  Google Scholar 

  17. Li X, ShamsiJazeyi H, Pesek SL, Agrawal A, Hammouda B, Verduzco R. Thermoresponsive PNIPAAM bottlebrush polymers with tailored side-chain length and end-group structure. Soft Matter. 2014;10:2008–15.

    Article  CAS  Google Scholar 

  18. Sun W, An Z, Wu P. UCST or LCST? Composition-dependent thermoresponsive behavior of Poly(N-acryloylglycinamide-co-diacetone acrylamide). Macromolecules. 2017;50:2175–82.

    Article  CAS  Google Scholar 

  19. Kureha T, Hayashi K, Li X, Shibayama M. Mechanical properties of temperature-responsive gels containing ethylene glycol in their side chains. Soft Matter. 2020;16:10946–53.

    Article  CAS  Google Scholar 

  20. Kim J, Jung HY, Park MJ. End-group chemistry and junction chemistry in polymer science: past, present, and future. Macromolecules. 2020;53:746–63.

    Article  CAS  Google Scholar 

  21. Maynard HD, Heredia KL, Li RC, Parra DP, Vázquez-Dorbatt V. Thermoresponsive biohybrid materials synthesized by ATRP. J Mater Chem. 2007;17:4015–7.

    Article  CAS  Google Scholar 

  22. Szabó Á, Szanka I, Tolnai G, Szarka G, Iván B. LCST-type thermoresponsive behaviour of interpolymer complexes of well-defined poly(poly(ethylene glycol) methacrylate)s and poly(acrylic acid) synthesized by ATRP. Polymer. 2017;111:61–6.

    Article  Google Scholar 

  23. Bauer T, Slugovc C. The thermo responsive behavior of glycol functionalized ring opening metathesis polymers. J Polym Sci., Part A: Polym. Chem. 2010;48:2098–108.

    Article  CAS  Google Scholar 

  24. Zhao Y, Zhang K. Thermoresponsive polymers based on ring-opening metathesis polymerization. Polym Chem. 2016;7:4081–9.

    Article  CAS  Google Scholar 

  25. Luan B, Muir BW, Zhu J, Hao X. RAFT: a copolymerization of NIPAM and HPMA and evaluation of thermo-responsive properties of poly(NIPAM-co-HPMA). RSC Adv. 2016;6:89925–33.

    Article  CAS  Google Scholar 

  26. García-Peñas A, Biswas CS, Liang W, Wang Y, Yang P, Stadler FJ. Effect of hydrophobic interactions on lower critical solution temperature for poly(N-isopropylacrylamide-co-dopamine methacrylamide) copolymers. Polymers. 2019;11:991.

    Article  Google Scholar 

  27. Tanaka T, Okamoto M. Reversible temperature-responsive and lectin-recognizing glycosylated block copolymers synthesized by RAFT polymerization. Polym J. 2018;50:523–31.

    Article  CAS  Google Scholar 

  28. Golas PL, Matyjaszewski K. Click chemistry and ATRP: a beneficial union for the preparation of functional materials. QSAR Comb Sci. 2007;26:1116–34.

    Article  CAS  Google Scholar 

  29. Bultema LA, Huang X, Brauer DD, Theato P, Polymer functionalization. In Functional polymers, Jafar Mazumder, MA; Sheardown, H; Al-Ahmed, A, Eds. Springer International Publishing: Cham. 2019; pp. 53–103.

  30. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB, Stepwise A. Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002;41:2596–9.

    Article  CAS  Google Scholar 

  31. Kakuchi R, Okura Y. The Passerini three-component reaction of aldehyde end-functionalized polymers via RAFT polymerization using chain transfer agents featuring aldehyde. Polym J. 2020;52:1057–66.

    Article  CAS  Google Scholar 

  32. Buller J, Laschewsky A, Lutz J-F, Wischerhoff E. Tuning the lower critical solution temperature of thermoresponsive polymers by biospecific recognition. Polym Chem. 2011;2:1486–9.

    Article  CAS  Google Scholar 

  33. Gardiner J, Martinez-Botella I, Tsanaktsidis J, Moad G. Dithiocarbamate RAFT agents with broad applicability—the 3,5-dimethyl-1H-pyrazole-1-carbodithioates. Polym Chem. 2016;7:481–92.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RK gratefully acknowledges the Leading Initiative for Excellent Young Researchers (LEADER) and a Grant-in-Aid for Scientific Research (C) (no. 19K05578) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryohei Kakuchi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirama, A., Chou, LC. & Kakuchi, R. Streamlined access to end-functionalized thermoresponsive polymers via a combination of bulk RAFT polymerization and quasi solvent-free Passerini three-component reaction. Polym J 53, 1175–1185 (2021). https://doi.org/10.1038/s41428-021-00504-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00504-z

Search

Quick links