Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Synthesis of pH-responsive polyimide hydrogel from bioderived amino acid

Abstract

A series of biobased polyimides bearing a structure derived from a predetermined tetracarboxylic dianhydride was synthesized. By ionizing the COOH group of the side chain with potassium hydroxide, four kinds of polyimides were solubilized in water, and the water-soluble polyimides were cast onto films over an aqueous solution, leading to higher optical transparency than that of non-water-soluble polyimides. 1H nuclear magnetic resonance measurements of the polyimides revealed no residual reactants from the polymerization process or side-chain modification. Partial crosslinking of the water-soluble polyimide chains by condensation of the carboxylate side chain with an amino acid-based diamine such as 4-aminophenylalanine or 4,4′-diamino-α-truxillic acid induced the formation of polyimide hydrogels. The remaining COOK groups of the obtained hydrogel were protonated/deprotonated by changing the pH, accompanied by reversible shrinking and swelling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gong JP. Materials both tough and soft. Science. 2014;344:161–2.

    Article  CAS  PubMed  Google Scholar 

  2. Cui K, Gong JP. Aggregated structures and their functionalities in hydrogels. Aggregate. 2021;2:e33.

    Google Scholar 

  3. Nakajima T. Generalization of the sacrificial bond principle for gel and elastomer toughening. Polym J. 2017;49:477–85.

    Article  CAS  Google Scholar 

  4. Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2001;53:321–39.

    Article  CAS  PubMed  Google Scholar 

  5. Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater. 2006;18:1345–60.

    Article  CAS  Google Scholar 

  6. Calvert P. Hydrogels for soft machines. Adv Mater. 2009;21:743–56.

    Article  CAS  Google Scholar 

  7. Bajpai AK, Shukla SK, Bhanu S, Kankane S. Responsive polymers in controlled drug delivery. Prog Polym Sci. 2008;33:1088–118.

    Article  CAS  Google Scholar 

  8. Hirotsu S, Hirokawa Y, Tanaka T. Volume‐phase transitions of ionized N‐isopropylacrylamide gels. J Chem Phys. 1987;87:1392–5.

    Article  CAS  Google Scholar 

  9. Yu H, Grainger DW. Thermo-sensitive swelling behavior in crosslinked N-isopropylacrylamide networks: cationic, anionic, and ampholytic hydrogels. J Appl Polym Sci. 1993;49:1553–63.

    Article  CAS  Google Scholar 

  10. Schild HG. Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci. 1992;17:163–249.

    Article  CAS  Google Scholar 

  11. Halperin A, Kröger M, Winnik FM. Poly(N-isopropylacrylamide) phase diagrams: fifty years of research. Angew Chem Int Ed. 2015;54:15342–67.

    Article  CAS  Google Scholar 

  12. Xue N, Qiu X-P, Chen Y, Satoh T, Kakuchi T, Winnik FM. Effect of chain architecture on the phase transition of star and cyclic poly(N-isopropylacrylamide) in water. J Polym Sci Part B: Polym Phys. 2016;54:2059–68.

    Article  CAS  Google Scholar 

  13. Li J, Kikuchi S, Sato S, Chen Y, Xu L, Song B, et al. Core-first synthesis and thermoresponsive property of three-, four-, and six-arm star-shaped poly(N,N-diethylacrylamide)s and their block copolymers with poly(N,N-dimethylacrylamide). Macromolecules. 2019;52:7207–17.

    Article  CAS  Google Scholar 

  14. Kikuchi S, Chen Y, Ichinohe E, Kitano K, Sato S, Duan Q, et al. Synthesis and thermoresponsive property of linear, cyclic, and star-shaped poly(N,N-diethylacrylamide)s using B(C6F5)3-catalyzed group transfer polymerization as facile end-functionalization method. Macromolecules. 2016;49:4828–38.

    Article  CAS  Google Scholar 

  15. Firestone BA, Siegel RA. Kinetics and mechanisms of water sorption in hydrophobic, ionizable copolymer gels. J Appl Polym Sci. 1991;43:901–14.

    Article  CAS  Google Scholar 

  16. Rasal RM, Janorkar AV, Hirt DE. Poly(lactic acid) modifications. Prog Polym Sci. 2010;35:338–56.

    Article  CAS  Google Scholar 

  17. Auras R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromol Biosci. 2004;4:835–64.

  18. Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 2000;21:2335–46.

    Article  CAS  PubMed  Google Scholar 

  19. Banerjee R, Ray SS. An overview of the recent advances in polylactide-based sustainable nanocomposites. Polym Eng Sci. 2021;61:617–49.

    Article  CAS  Google Scholar 

  20. Yum S, Kim H, Seo Y. Synthesis and characterization of isosorbide based polycarbonates. Polymer. 2019;179:121685.

    Article  CAS  Google Scholar 

  21. Zhang Z, Xu F, He H, Ding W, Fang W, Sun W, et al. Synthesis of high-molecular weight isosorbide-based polycarbonates through efficient activation of endo-hydroxyl groups by an ionic liquid. Green Chem. 2019;21:3891–901.

    Article  CAS  Google Scholar 

  22. Rose M, Palkovits R. Isosorbide as a renewable platform chemical for versatile applications—quo vadis? ChemSusChem. 2012;5:167–76.

    Article  CAS  PubMed  Google Scholar 

  23. Froidevaux V, Negrell C, Caillol S, Pascault JP, Boutevin B. Biobased amines: from synthesis to polymers; present and future. Chem Rev. 2016;116:14181–224.

    Article  CAS  PubMed  Google Scholar 

  24. Wilbon PA, Chu F, Tang C. Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromol Rapid Commun. 2013;34:8–37.

    Article  CAS  PubMed  Google Scholar 

  25. Hadjichristidis N, Iatrou H, Pitsikalis M, Sakellariou G. Synthesis of well-defined polypeptide-based materials via the ring-opening polymerization of α-amino acid N-carboxyanhydrides. Chem Rev. 2009;109:5528–78.

    Article  CAS  PubMed  Google Scholar 

  26. Khadka DB, Cross MC, Haynie DT. A synthetic polypeptide electrospun biomaterial. ACS Appl Mater Interfaces. 2011;3:2994–3001.

    Article  CAS  PubMed  Google Scholar 

  27. Kaneko T, Ali MA, Captain I, Perlin P, Deming TJ. Polypeptide gels incorporating the exotic functional aromatic amino acid 4-amino-l-phenylalanine. Polym Chem. 2018;9:3466–72.

    Article  CAS  Google Scholar 

  28. Bellomo EG, Wyrsta MD, Pakstis L, Pochan DJ, Deming TJ. Stimuli-responsive polypeptide vesicles by conformation-specific assembly. Nat Mater. 2004;3:244–8.

    Article  CAS  PubMed  Google Scholar 

  29. Okajima MK, Bamba T, Kaneso Y, Hirata K, Fukusaki E, Kajiyama SI, et al. Supergiant ampholytic sugar chains with imbalanced charge ratio form saline ultra-absorbent hydrogels. Macromolecules. 2008;41:4061–4.

    Article  CAS  Google Scholar 

  30. Duan H, Shao Z, Zhao M, Zhou Z. Preparation and properties of environmental-friendly coatings based on carboxymethyl cellulose nitrate ester & modified alkyd. Carbohydr Polym. 2016;137:92–9.

    Article  CAS  PubMed  Google Scholar 

  31. Williams DBG, Mason JM, Tristram CJ, Hinkley SFR. Cellulose as a source of water dispersible renewable film-forming materials. Macromolecules. 2015;48:8497–508.

    Article  CAS  Google Scholar 

  32. Okeyoshi K, Okajima MK, Kaneko T. The cyanobacterial polysaccharide sacran: characteristics, structures, and preparation of LC gels. Polym J. 2021;53:81–91.

    Article  CAS  Google Scholar 

  33. Okeyoshi K, Okajima MK, Kaneko T. Milliscale self-integration of megamolecule biopolymers on a drying gas–aqueous liquid crystalline interface. Biomacromolecules. 2016;17:2096–103.

    Article  CAS  PubMed  Google Scholar 

  34. Funaki T, Kaneko T, Yamaoka K, Ohsedo Y, Gong JP, Osada Y, et al. Shear-induced mesophase organization of polyanionic rigid rods in aqueous solution. Langmuir. 2004;20:6518–20.

    Article  CAS  PubMed  Google Scholar 

  35. Ono Y, Goto R, Hara M, Nagano S, Abe T, Nagao Y. High proton conduction of organized sulfonated polyimide thin films with planar and bent backbones. Macromolecules. 2018;51:3351–9.

    Article  CAS  Google Scholar 

  36. Nagao Y, Ohno K, Tsuyuki S, Suetsugu K, Hara M, Nagano S. Effect of molecular orientation to proton conductivity in sulfonated polyimides with bent backbones. Mol Cryst Liq Cryst. 2019;686:84–91.

    Article  CAS  Google Scholar 

  37. Takakura K, Ono Y, Suetsugu K, Hara M, Nagano S, Abe T, et al. Lyotropic ordering for high proton conductivity in sulfonated semialiphatic polyimide thin films. Polym J. 2019;51:31–9.

    Article  CAS  Google Scholar 

  38. Shigekura Y, Chen YM, Furukawa H, Kaneko T, Kaneko D, Osada Y, et al. Anisotropic polyion-complex gels from template polymerization. Adv Mater. 2005;17:2695–9.

    Article  CAS  Google Scholar 

  39. Dwivedi S, Nag A, Sakamoto S, Funahashi Y, Harimoto T, Takada K, et al. High-temperature resistant water-soluble polymers derived from exotic amino acids. RSC Adv. 2020;10:38069–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Falamarzian M, Varshosaz J. The effect of structural changes on swelling kinetics of polybasic/hydrophobic pH-sensitive hydrogels. Drug Dev Ind Pharm. 1998;24:667–9.

    Article  CAS  PubMed  Google Scholar 

  41. Kou JH, Amidon GL, Lee PI. pH-dependent swelling and solute diffusion characteristics of poly(hydroxyethyl methacrylate–CO–methacrylie acid) hydrogels. Pharm Res. 1988;5:592–7.

    Article  CAS  PubMed  Google Scholar 

  42. Brannon-Peppas L, Peppas NA. Dynamic and equilibrium swelling behaviour of pH-sensitive hydrogels containing 2-hydroxyethyl methacrylate. Biomaterials. 1990;11:635–44.

    Article  CAS  PubMed  Google Scholar 

  43. Suvannasara P, Tateyama S, Miyasato A, Matsumura K, Shimoda T, Ito T, et al. Biobased polyimides from 4-aminocinnamic acid photodimer. Macromolecules. 2014;47:1586–93.

    Article  CAS  Google Scholar 

  44. Dwivedi S, Kaneko T. Molecular design of soluble biopolyimide with high rigidity. Polymers. 2018;10:4.

    Article  CAS  Google Scholar 

  45. Shin H, Wang S, Tateyama S, Kaneko D, Kaneko T. Preparation of a ductile biopolyimide film by copolymerization. Ind Eng Chem Res. 2016;55:8761–6.

    Article  CAS  Google Scholar 

  46. Takada K, Shinagawa H, Morita Y, Grewal MS, Taya K, Kumar A, et al. Syntheses of soluble biopolyimides using 4-aminophenylalanine. Chin J Polym Sci. 2020;38:1117–23.

    Article  CAS  Google Scholar 

  47. Amornwachirabodee K, Okajima MK, Kaneko T. Uniaxial swelling in LC hydrogels formed by two-step cross-linking. Macromolecules. 2015;48:8615–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Shibuya Science and Sports Culture Foundation and partially supported by the Japan Society for the Promotion of Science of Grant-in-Aid for Early-Career Scientists (21K14681) and Super Highways (Japan Science and Technology Agency), Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenji Takada or Tatsuo Kaneko.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takada, K., Noda, T., Kobayashi, T. et al. Synthesis of pH-responsive polyimide hydrogel from bioderived amino acid. Polym J 53, 1223–1230 (2021). https://doi.org/10.1038/s41428-021-00509-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00509-8

This article is cited by

Search

Quick links