Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spindle positioning and its impact on vertebrate tissue architecture and cell fate

Abstract

In multicellular systems, oriented cell divisions are essential for morphogenesis and homeostasis as they determine the position of daughter cells within the tissue and also, in many cases, their fate. Early studies in invertebrates led to the identification of conserved core mechanisms of mitotic spindle positioning centred on the Gαi–LGN–NuMA–dynein complex. In recent years, much has been learnt about the way this complex functions in vertebrate cells. In particular, studies addressed how the Gαi–LGN–NuMA–dynein complex dynamically crosstalks with astral microtubules and the actin cytoskeleton, and how it is regulated to orient the spindle according to cellular and tissue-wide cues. We have also begun to understand how dynein motors and actin regulators interact with mechanosensitive adhesion molecules sensing extracellular mechanical stimuli, such as cadherins and integrins, and with signalling pathways so as to respond to extracellular cues instructing the orientation of the division axis in vivo. In this Review, with the focus on epithelial tissues, we discuss the molecular mechanisms of mitotic spindle orientation in vertebrate cells, and how this machinery is regulated by epithelial cues and extracellular signals to maintain tissue cohesiveness during mitosis. We also outline recent knowledge of how spindle orientation impacts tissue architecture in epithelia and its emerging links to the regulation of cell fate decisions. Finally, we describe how defective spindle orientation can be corrected or its effects eliminated in tissues under physiological conditions, and the pathological implications associated with spindle misorientation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Morphological changes instructing spindle orientation during mitotic progression.
Fig. 2: Working principles of cortical force generators.
Fig. 3: Molecular mechanisms of oriented planar cell divisions.
Fig. 4: Roles of regulated spindle orientation in controlling tissue architecture.
Fig. 5: Cues implicated in asymmetric cell fate acquisition.
Fig. 6: Tumorigenic consequences of spindle misalignment and tissue responses to ameliorate spindle misorientation.

Similar content being viewed by others

References

  1. Prosser, S. L. & Pelletier, L. Mitotic spindle assembly in animal cells: a fine balancing act. Nat. Rev. Mol. Cell Biol. 18, 187–201 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Knoblich, J. A. Asymmetric cell division during animal development. Nat. Rev. Mol. Cell Biol. 2, 11–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Kozlowski, C., Srayko, M. & Nedelec, F. Cortical microtubule contacts position the spindle in C. elegans embryos. Cell 129, 499–510 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Thery, M., Jimenez-Dalmaroni, A., Racine, V., Bornens, M. & Julicher, F. Experimental and theoretical study of mitotic spindle orientation. Nature 447, 493–496 (2007). This article shows that the patterning of adhesiveness of a cell with regard to the microenvironment is a critical factor for the regulation of spindle orientation in vertebrate cells.

    Article  CAS  PubMed  Google Scholar 

  5. Dinarina, A. et al. Chromatin shapes the mitotic spindle. Cell 138, 502–513 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Dimitracopoulos, A. et al. Mechanochemical crosstalk produces cell-intrinsic patterning of the cortex to orient the mitotic spindle. Curr. Biol. 30, 3687–3696.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. di Pietro, F., Echard, A. & Morin, X. Regulation of mitotic spindle orientation: an integrated view. EMBO Rep. 17, 1106–1130 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Knoblich, J. A. Mechanisms of asymmetric stem cell division. Cell 132, 583–597 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Knoblich, J. A. Asymmetric cell division: recent developments and their implications for tumour biology. Nat. Rev. Mol. Cell Biol. 11, 849–860 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gonczy, P. Mechanisms of asymmetric cell division: flies and worms pave the way. Nat. Rev. Mol. Cell Biol. 9, 355–366 (2008).

    Article  PubMed  CAS  Google Scholar 

  11. Dwivedi, D., Kumari, A., Rathi, S., Mylavarapu, S. V. S. & Sharma, M. The dynein adaptor Hook2 plays essential roles in mitotic progression and cytokinesis. J. Cell Biol. 218, 871–894 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hanafusa, H. et al. PLK1-dependent activation of LRRK1 regulates spindle orientation by phosphorylating CDK5RAP2. Nat. Cell Biol. 17, 1024–1035 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Toyoshima, F. & Nishida, E. Integrin-mediated adhesion orients the spindle parallel to the substratum in an EB1- and myosin X-dependent manner. EMBO J. 26, 1487–1498 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bouissou, A. et al. γ-Tubulin ring complexes and EB1 play antagonistic roles in microtubule dynamics and spindle positioning. EMBO J. 33, 114–128 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Polverino, F. et al. The Aurora-A/TPX2 axis directs spindle orientation in adherent human cells by regulating NuMA and microtubule stability. Curr. Biol. 31, 658–667.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Mora-Bermudez, F., Matsuzaki, F. & Huttner, W. B. Specific polar subpopulations of astral microtubules control spindle orientation and symmetric neural stem cell division. eLife 3, e02875 (2014).

    Article  PubMed Central  CAS  Google Scholar 

  17. Bodakuntla, S., Jijumon, A. S., Villablanca, C., Gonzalez-Billault, C. & Janke, C. Microtubule-associated proteins: structuring the cytoskeleton. Trends Cell Biol. 29, 804–819 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Nguyen-Ngoc, T., Afshar, K. & Gonczy, P. Coupling of cortical dynein and G alpha proteins mediates spindle positioning in Caenorhabditis elegans. Nat. Cell Biol. 9, 1294–1302 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Singh, D., Schmidt, N., Muller, F., Bange, T. & Bird, A. W. Destabilization of long astral microtubules via Cdk1-dependent removal of GTSE1 from their plus ends facilitates prometaphase spindle orientation. Curr. Biol. 31, 766–781.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Gupta, M. L. Jr, Carvalho, P., Roof, D. M. & Pellman, D. Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle. Nat. Cell Biol. 8, 913–923 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. McHugh, T., Gluszek, A. A. & Welburn, J. P. I. Microtubule end tethering of a processive kinesin-8 motor Kif18b is required for spindle positioning. J. Cell Biol. 217, 2403–2416 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Janke, C. & Magiera, M. M. The tubulin code and its role in controlling microtubule properties and functions. Nat. Rev. Mol. Cell Biol. 21, 307–326 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Gundersen, G. G. & Bulinski, J. C. Distribution of tyrosinated and nontyrosinated alpha-tubulin during mitosis. J. Cell Biol. 102, 1118–1126 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Szyk, A., Deaconescu, A. M., Piszczek, G. & Roll-Mecak, A. Tubulin tyrosine ligase structure reveals adaptation of an ancient fold to bind and modify tubulin. Nat. Struct. Mol. Biol. 18, 1250–1258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peris, L. et al. Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends. J. Cell Biol. 174, 839–849 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bieling, P. et al. CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites. J. Cell Biol. 183, 1223–1233 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Erck, C. et al. A vital role of tubulin-tyrosine-ligase for neuronal organization. Proc. Natl Acad. Sci. USA 102, 7853–7858 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Poulson, N. D. & Lechler, T. Robust control of mitotic spindle orientation in the developing epidermis. J. Cell Biol. 191, 915–922 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Laan, L. et al. Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters. Cell 148, 502–514 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kotak, S., Busso, C. & Gonczy, P. Cortical dynein is critical for proper spindle positioning in human cells. J. Cell Biol. 199, 97–110 (2012). In this article, the authors provide evidence in support of the notion that in vertebrate cells NuMA interacts with the dynein–dynactin complex and recruits them to the cortex to orient the spindle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Elias, S. et al. Huntingtin regulates mammary stem cell division and differentiation. Stem Cell Rep. 2, 491–506 (2014).

    Article  CAS  Google Scholar 

  32. Du, Q. & Macara, I. G. Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell 119, 503–516 (2004). This article describes the existence in vertebrates of the protein LGN, which physically links membrane-associated Gαi•GDP subunits with the dynein adaptor NuMA and promotes spindle orientation.

    Article  CAS  PubMed  Google Scholar 

  33. Morin, X. & Bellaiche, Y. Mitotic spindle orientation in asymmetric and symmetric cell divisions during animal development. Dev. Cell 21, 102–119 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Gallini, S. et al. NuMA phosphorylation by Aurora-A orchestrates spindle orientation. Curr. Biol. 26, 458–469 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Pan, Z. et al. An autoinhibited conformation of LGN reveals a distinct interaction mode between GoLoco motifs and TPR motifs. Structure 21, 1007–1017 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Zhu, J. et al. LGN/mInsc and LGN/NuMA complex structures suggest distinct functions in asymmetric cell division for the Par3/mInsc/LGN and Galphai/LGN/NuMA pathways. Mol. Cell 43, 418–431 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saadaoui, M. et al. Loss of the canonical spindle orientation function in the Pins/LGN homolog AGS3. EMBO Rep. 18, 1509–1520 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sanada, K. & Tsai, L. H. G protein betagamma subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors. Cell 122, 119–131 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Yoshiura, S., Ohta, N. & Matsuzaki, F. Tre1 GPCR signaling orients stem cell divisions in the Drosophila central nervous system. Dev. Cell 22, 79–91 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Cazorla-Vazquez, S. & Engel, F. B. Adhesion GPCRs in kidney development and disease. Front. Cell Dev. Biol. 6, 9 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. McDonald, W. S. et al. Altered cleavage plane orientation with increased genomic aneuploidy produced by receptor-mediated lysophosphatidic acid (LPA) signaling in mouse cerebral cortical neural progenitor cells. Mol. Brain 13, 169 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Afshar, K. et al. RIC-8 is required for GPR-1/2-dependent Gα function during asymmetric division of C. elegans embryos. Cell 119, 219–230 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Hess, H. A., Roper, J. C., Grill, S. W. & Koelle, M. R. RGS-7 completes a receptor-independent heterotrimeric G protein cycle to asymmetrically regulate mitotic spindle positioning in C. elegans. Cell 119, 209–218 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Wang, H. et al. Ric-8 controls Drosophila neural progenitor asymmetric division by regulating heterotrimeric G proteins. Nat. Cell Biol. 7, 1091–1098 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Woodard, G. E. et al. Ric-8A and Gi alpha recruit LGN, NuMA, and dynein to the cell cortex to help orient the mitotic spindle. Mol. Cell Biol. 30, 3519–3530 (2011).

    Article  CAS  Google Scholar 

  46. Chishiki, K., Kamakura, S., Hayase, J. & Sumimoto, H. Ric-8A, an activator protein of Galphai, controls mammalian epithelial cell polarity for tight junction assembly and cystogenesis. Genes Cell 22, 293–309 (2017). Work by Woodard et al. (2011) and Chishiki et al. (2017) identifies RIC8A as a GEF for Gαi implicated in oriented cell divisions in vertebrate cells.

    Article  CAS  Google Scholar 

  47. McClelland, L. J. et al. Structure of the G protein chaperone and guanine nucleotide exchange factor Ric-8A bound to Galphai1. Nat. Commun. 11, 1077 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zeng, B. et al. Structure, function, and dynamics of the Gα binding domain of Ric-8A. Structure 27, 1137–1147.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kant, R., Zeng, B., Thomas, C. J., Bothner, B. & Sprang, S. R. Ric-8A, a G protein chaperone with nucleotide exchange activity induces long-range secondary structure changes in Galpha. eLife 5, e19238 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Papasergi-Scott, M. M. et al. Dual phosphorylation of Ric-8A enhances its ability to mediate G protein alpha subunit folding and to stimulate guanine nucleotide exchange. Sci Signal. 11, eaap8113 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Seven, A. B. et al. Structures of Gα proteins in complex with their chaperone reveal quality control mechanisms. Cell Rep. 30, 3699–3709.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Urnavicius, L. et al. The structure of the dynactin complex and its interaction with dynein. Science 347, 1441–1446 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Reck-Peterson, S. L., Redwine, W. B., Vale, R. D. & Carter, A. P. The cytoplasmic dynein transport machinery and its many cargoes. Nat. Rev. Mol. Cell Biol. 19, 382–398 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Okumura, M., Natsume, T., Kanemaki, M. T. & Kiyomitsu, T. Dynein-dynactin-NuMA clusters generate cortical spindle-pulling forces as a multi-arm ensemble. eLife 7, e36559 (2018). The authors use optogenetic methods to dissect the function of the diverse domains of NuMA in spindle positioning in HeLa cells.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Seldin, L., Poulson, N. D., Foote, H. P. & Lechler, T. NuMA localization, stability, and function in spindle orientation involve 4.1 and Cdk1 interactions. Mol. Biol. Cell 24, 3651–3662 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kotak, S., Busso, C. & Gonczy, P. NuMA interacts with phosphoinositides and links the mitotic spindle with the plasma membrane. EMBO J. 33, 1815–1830 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zheng, Z., Wan, Q., Meixiong, G. & Du, Q. Cell cycle-regulated membrane binding of NuMA contributes to efficient anaphase chromosome separation. Mol. Biol. Cell 25, 606–619 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kiyomitsu, T. & Cheeseman, I. M. Cortical dynein and asymmetric membrane elongation coordinately position the spindle in anaphase. Cell 154, 391–402 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Du, Q., Stukenberg, P. T. & Macara, I. G. A mammalian partner of inscuteable binds NuMA and regulates mitotic spindle organization. Nat. Cell Biol. 3, 1069–1075 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Culurgioni, S., Alfieri, A., Pendolino, V., Laddomada, F. & Mapelli, M. Inscuteable and NuMA proteins bind competitively to Leu-Gly-Asn repeat-enriched protein (LGN) during asymmetric cell divisions. Proc. Natl Acad. Sci. USA 108, 20998–21003 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Du, Q., Taylor, L., Compton, D. A. & Macara, I. G. LGN blocks the ability of NuMA to bind and stabilize microtubules. A mechanism for mitotic spindle assembly regulation. Curr. Biol. 12, 1928–1933 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Seldin, L., Muroyama, A. & Lechler, T. NuMA-microtubule interactions are critical for spindle orientation and the morphogenesis of diverse epidermal structures. eLife 5, e12504 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pirovano, L. et al. Hexameric NuMA:LGN structures promote multivalent interactions required for planar epithelial divisions. Nat. Commun. 10, 2208 (2019). This article describes the organizational principles of LGN–NuMA complexes at the mitotic cortex.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Renna, C. et al. Organizational principles of the NuMA-dynein interaction interface and implications for mitotic spindle functions. Structure 28, 820–829.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Urnavicius, L. et al. Cryo-EM shows how dynactin recruits two dyneins for faster movement. Nature 554, 202–206 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McKenney, R. J., Huynh, W., Tanenbaum, M. E., Bhabha, G. & Vale, R. D. Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes. Science 345, 337–341 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kotak, S., Afshar, K., Busso, C. & Gonczy, P. Aurora A kinase regulates proper spindle positioning in C. elegans and in human cells. J. Cell Sci. 129, 3015–3025 (2016).

    CAS  PubMed  Google Scholar 

  68. Kotak, S., Busso, C. & Gonczy, P. NuMA phosphorylation by CDK1 couples mitotic progression with cortical dynein function. EMBO J. 32, 2517–2529 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee, B. H., Schwager, F., Meraldi, P. & Gotta, M. p37/UBXN2B regulates spindle orientation by limiting cortical NuMA recruitment via PP1/Repo-Man. J. Cell Biol. 217, 483–493 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Keshri, R., Rajeevan, A. & Kotak, S. PP2A-B55γ counteracts Cdk1 and regulates proper spindle orientation through the cortical dynein adaptor NuMA. J. Cell Sci. 133, jcs243857 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kiyomitsu, T. & Cheeseman, I. M. Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation. Nat. Cell Biol. 14, 311–317 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sana, S., Keshri, R., Rajeevan, A., Kapoor, S. & Kotak, S. Plk1 regulates spindle orientation by phosphorylating NuMA in human cells. Life Sci. Alliance 1, e201800223 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tame, M. A., Raaijmakers, J. A., Afanasyev, P. & Medema, R. H. Chromosome misalignments induce spindle-positioning defects. EMBO Rep. 17, 317–325 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rodrigues, N. T. et al. Kinetochore-localized PP1-Sds22 couples chromosome segregation to polar relaxation. Nature 524, 489–492 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Chang, C. C., Huang, T. L., Shimamoto, Y., Tsai, S. Y. & Hsia, K. C. Regulation of mitotic spindle assembly factor NuMA by importin-beta. J. Cell Biol. 216, 3453–3462 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Johnston, C. A., Hirono, K., Prehoda, K. E. & Doe, C. Q. Identification of an Aurora-A/PinsLINKER/Dlg spindle orientation pathway using induced cell polarity in S2 cells. Cell 138, 1150–1163 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Johnston, C. A. et al. Formin-mediated actin polymerization cooperates with Mushroom body defect (Mud)-dynein during Frizzled-Dishevelled spindle orientation. J. Cell Sci. 126, 4436–4444 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Segalen, M. et al. The Fz-Dsh planar cell polarity pathway induces oriented cell division via Mud/NuMA in Drosophila and zebrafish. Dev. Cell 19, 740–752 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gong, Y., Mo, C. & Fraser, S. E. Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation. Nature 430, 689–693 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Yang, Y. et al. CYLD regulates spindle orientation by stabilizing astral microtubules and promoting dishevelled-NuMA-dynein/dynactin complex formation. Proc. Natl Acad. Sci. USA 111, 2158–2163 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Habib, S. J. et al. A localized Wnt signal orients asymmetric stem cell division in vitro. Science 339, 1445–1448 (2013). This article demonstrates that localized WNT3 signals promote asymmetric divisions of embryonic stem cells with the mitotic spindle axis oriented towards the WNT3 source.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Junyent, S. et al. Specialized cytonemes induce self-organization of stem cells. Proc. Natl Acad. Sci. USA 117, 7236–7244 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Okuchi, Y. et al. Wnt-modified materials mediate asymmetric stem cell division to direct human osteogenic tissue formation for bone repair. Nat. Mater. 20, 108–118 (2020).

    Article  PubMed  CAS  Google Scholar 

  84. Ramkumar, N. & Baum, B. Coupling changes in cell shape to chromosome segregation. Nat. Rev. Mol. Cell Biol. 17, 511–521 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Redemann, S. et al. Membrane invaginations reveal cortical sites that pull on mitotic spindles in one-cell C. elegans embryos. PLoS ONE 5, e12301 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Fehon, R. G., McClatchey, A. I. & Bretscher, A. Organizing the cell cortex: the role of ERM proteins. Nat. Rev. Mol. Cell Biol. 11, 276–287 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Machicoane, M. et al. SLK-dependent activation of ERMs controls LGN-NuMA localization and spindle orientation. J. Cell Biol. 205, 791–799 (2014). This article describes the implications in oriented divisions of ERM proteins connecting the plasma membrane to the actomyosin cortex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Carminati, M. et al. Concomitant binding of afadin to LGN and F-actin directs planar spindle orientation. Nat. Struct. Mol. Biol. 23, 155–163 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Zhu, M. et al. MISP is a novel Plk1 substrate required for proper spindle orientation and mitotic progression. J. Cell Biol. 200, 773–787 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Maier, B., Kirsch, M., Anderhub, S., Zentgraf, H. & Krämer, A. The novel actin/focal adhesion-associated protein MISP is involved in mitotic spindle positioning in human cells. Cell Cycle 12, 1457–1471 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kwon, M., Bagonis, M., Danuser, G. & Pellman, D. Direct microtubule-binding by myosin-10 orients centrosomes toward retraction fibers and subcortical actin clouds. Dev. Cell 34, 323–337 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Matsumura, S. et al. Interphase adhesion geometry is transmitted to an internal regulator for spindle orientation via caveolin-1. Nat. Commun. 7, ncomms11858 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Farina, F. et al. The centrosome is an actin-organizing centre. Nat. Cell Biol. 18, 65–75 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Inoue, D. et al. Actin filaments regulate microtubule growth at the centrosome. EMBO J. 38, e99630 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Dogterom, M. & Koenderink, G. H. Actin-microtubule crosstalk in cell biology. Nat. Rev. Mol. Cell Biol. 20, 38–54 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Jaffe, A. B., Kaji, N., Durgan, J. & Hall, A. Cdc42 controls spindle orientation to position the apical surface during epithelial morphogenesis. J. Cell Biol. 183, 625–633 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fink, J. et al. External forces control mitotic spindle positioning. Nat. Cell Biol. 13, 771–778 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Kanchanawong, P. et al. Nanoscale architecture of integrin-based cell adhesions. Nature 468, 580–584 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Taneja, N. et al. Focal adhesions control cleavage furrow shape and spindle tilt during mitosis. Sci. Rep. 6, 29846 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lechler, T. & Fuchs, E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437, 275–280 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rodriguez-Boulan, E. & Macara, I. G. Organization and execution of the epithelial polarity programme. Nat. Rev. Mol. Cell Biol. 15, 225–242 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Williams, S. E., Beronja, S., Pasolli, H. A. & Fuchs, E. Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature 470, 353–358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gloerich, M., Bianchini, J. M., Siemers, K. A., Cohen, D. J. & Nelson, W. J. Cell division orientation is coupled to cell-cell adhesion by the E-cadherin/LGN complex. Nat. Commun. 8, 13996 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Takeichi, M. Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat. Rev. Mol. Cell Biol. 15, 397–410 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Hart, K. C. et al. E-cadherin and LGN align epithelial cell divisions with tissue tension independently of cell shape. Proc. Natl Acad. Sci. USA 114, E5845–E5853 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nestor-Bergmann, A. et al. Decoupling the roles of cell shape and mechanical stress in orienting and cueing epithelial mitosis. Cell Rep. 26, 2088–2100.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bosveld, F. et al. Epithelial tricellular junctions act as interphase cell shape sensors to orient mitosis. Nature 530, 495–498 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Peyre, E. et al. A lateral belt of cortical LGN and NuMA guides mitotic spindle movements and planar division in neuroepithelial cells. J. Cell Biol. 193, 141–154 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Saadaoui, M. et al. Dlg1 controls planar spindle orientation in the neuroepithelium through direct interaction with LGN. J. Cell Biol. 206, 707–717 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hertwig, O. & Hertwig, R. Untersuchungen zur Morphologie und Physiologie der Zelle (Fischer, 1884). In this classical article, Hertwig and Hertwig suggest that mitotic spindle positioning depends on cell shape in interphase.

  111. Campinho, P. et al. Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly. Nat. Cell Biol. 15, 1405–1414 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Wyatt, T. P. et al. Emergence of homeostatic epithelial packing and stress dissipation through divisions oriented along the long cell axis. Proc. Natl Acad. Sci. USA 112, 5726–5731 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Carlton, J. G., Jones, H. & Eggert, U. S. Membrane and organelle dynamics during cell division. Nat. Rev. Mol. Cell Biol. 21, 151–166 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Sunchu, B. & Cabernard, C. Principles and mechanisms of asymmetric cell division. Development 147, dev167650 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Smart, I. H. Variation in the plane of cell cleavage during the process of stratification in the mouse epidermis. Br. J. Dermatol. 82, 276–282 (1970).

    Article  CAS  PubMed  Google Scholar 

  116. Box, K., Joyce, B. W. & Devenport, D. Epithelial geometry regulates spindle orientation and progenitor fate during formation of the mammalian epidermis. eLife 8, e47102 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Ouspenskaia, T., Matos, I., Mertz, A. F., Fiore, V. F. & Fuchs, E. WNT-SHH antagonism specifies and expands stem cells prior to niche formation. Cell 164, 156–169 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Byrd, K. M. et al. LGN plays distinct roles in oral epithelial stratification, filiform papilla morphogenesis and hair follicle development. Development 143, 2803–2817 (2016). This work demonstrates cell type-specific functions for the spindle orientation machinery within the epidermis.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Tang, N., Marshall, W. F., McMahon, M., Metzger, R. J. & Martin, G. R. Control of mitotic spindle angle by the RAS-regulated ERK1/2 pathway determines lung tube shape. Science 333, 342–345 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tang, Z. et al. Mechanical forces program the orientation of cell division during airway tube morphogenesis. Dev. Cell 44, 313–325.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Costa, G. et al. Asymmetric division coordinates collective cell migration in angiogenesis. Nat. Cell Biol. 18, 1292–1301 (2016). This article demonstrates that endothelial branching involves asymmetric divisions resulting in differently sized daughters that form stalk and tip cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Casaletto, J. B., Saotome, I., Curto, M. & McClatchey, A. I. Ezrin-mediated apical integrity is required for intestinal homeostasis. Proc. Natl Acad. Sci. USA 108, 11924–11929 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chen, J. & Krasnow, M. A. Integrin beta 1 suppresses multilayering of a simple epithelium. PLoS ONE 7, e52886 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Strzyz, P. J. et al. Interkinetic nuclear migration is centrosome independent and ensures apical cell division to maintain tissue integrity. Dev. Cell 32, 203–219 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Das, R. M. & Storey, K. G. Mitotic spindle orientation can direct cell fate and bias Notch activity in chick neural tube. EMBO Rep. 13, 448–454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Konno, D. et al. Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat. Cell Biol. 10, 93–101 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Morin, X., Jaouen, F. & Durbec, P. Control of planar divisions by the G-protein regulator LGN maintains progenitors in the chick neuroepithelium. Nat. Neurosci. 10, 1440–1448 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Carroll, T. D. et al. Interkinetic nuclear migration and basal tethering facilitates post-mitotic daughter separation in intestinal organoids. J. Cell Sci. 130, 3862–3877 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Quyn, A. J. et al. Spindle orientation bias in gut epithelial stem cell compartments is lost in precancerous tissue. Cell Stem Cell 6, 175–181 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Chang, J. T. et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315, 1687–1691 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Chang, J. T. et al. Asymmetric proteasome segregation as a mechanism for unequal partitioning of the transcription factor T-bet during T lymphocyte division. Immunity 34, 492–504 (2011). Work by Chang et al. (2007, 2011) demonstrates that T lymphocytes undergo asymmetric cell division guided by antigen-presenting cells and that the transcription factor T-bet acts as a cell fate determinant.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Barnett, B. E. et al. Asymmetric B cell division in the germinal center reaction. Science 335, 342–344 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Lim, H. Y. G. et al. Keratins are asymmetrically inherited fate determinants in the mammalian embryo. Nature 585, 404–409 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Paridaen, J. T. & Huttner, W. B. Neurogenesis during development of the vertebrate central nervous system. EMBO Rep. 15, 351–364 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Raghavan, S., Bauer, C., Mundschau, G., Li, Q. & Fuchs, E. Conditional ablation of beta1 integrin in skin. Severe defects in epidermal proliferation, basement membrane formation, and hair follicle invagination. J. Cell Biol. 150, 1149–1160 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Carroll, J. M., Romero, M. R. & Watt, F. M. Suprabasal integrin expression in the epidermis of transgenic mice results in developmental defects and a phenotype resembling psoriasis. Cell 83, 957–968 (1995).

    Article  CAS  PubMed  Google Scholar 

  137. Bultje, R. S. et al. Mammalian Par3 regulates progenitor cell asymmetric division via notch signaling in the developing neocortex. Neuron 63, 189–202 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dong, Z., Yang, N., Yeo, S. Y., Chitnis, A. & Guo, S. Intralineage directional Notch signaling regulates self-renewal and differentiation of asymmetrically dividing radial glia. Neuron 74, 65–78 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kawaguchi, D., Furutachi, S., Kawai, H., Hozumi, K. & Gotoh, Y. Dll1 maintains quiescence of adult neural stem cells and segregates asymmetrically during mitosis. Nat. Commun. 4, 1880 (2013).

    Article  PubMed  CAS  Google Scholar 

  140. Matos, I. et al. Progenitors oppositely polarize WNT activators and inhibitors to orchestrate tissue development. eLife 9, e54304 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Mogessie, B., Scheffler, K. & Schuh, M. Assembly and positioning of the oocyte meiotic spindle. Annu. Rev. Cell Dev. Biol. 34, 381–403 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. Pfender, S., Kuznetsov, V., Pleiser, S., Kerkhoff, E. & Schuh, M. Spire-type actin nucleators cooperate with formin-2 to drive asymmetric oocyte division. Curr. Biol. 21, 955–960 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Caussinus, E. & Gonzalez, C. Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat. Genet. 37, 1125–1129 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Nakajima, Y., Meyer, E. J., Kroesen, A., McKinney, S. A. & Gibson, M. C. Epithelial junctions maintain tissue architecture by directing planar spindle orientation. Nature 500, 359–362 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Boumahdi, S. et al. SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature 511, 246–250 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Siegle, J. M. et al. SOX2 is a cancer-specific regulator of tumour initiating potential in cutaneous squamous cell carcinoma. Nat. Commun. 5, 4511 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Beck, B. et al. A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours. Nature 478, 399–403 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Morrow, A., Underwood, J., Seldin, L., Hinnant, T. & Lechler, T. Regulated spindle orientation buffers tissue growth in the epidermis. eLife 8, e48482 (2019). This work demonstrates that spindle orientation has a tumour-suppressive function and that loss of spindle orientation can synergize with oncogenes to promote tumour overgrowth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zimdahl, B. et al. Lis1 regulates asymmetric division in hematopoietic stem cells and in leukemia. Nat. Genet. 46, 245–252 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Diaz-Horta, O. et al. GPSM2 mutations in Chudley-McCullough syndrome. Am. J. Med. Genet. A 158A, 2972–2973 (2012).

    Article  PubMed  CAS  Google Scholar 

  151. Doherty, D. et al. GPSM2 mutations cause the brain malformations and hearing loss in Chudley-McCullough syndrome. Am. J. Hum. Genet. 90, 1088–1093 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mauriac, S. A. et al. Defective Gpsm2/Galphai3 signalling disrupts stereocilia development and growth cone actin dynamics in Chudley-McCullough syndrome. Nat. Commun. 8, 14907 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Fischer, E. et al. Defective planar cell polarity in polycystic kidney disease. Nat. Genet. 38, 21–23 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Jayaraman, D., Bae, B. I. & Walsh, C. A. The genetics of primary microcephaly. Annu. Rev. Genomics Hum. Genet. 19, 177–200 (2018).

    Article  CAS  PubMed  Google Scholar 

  155. Pilaz, L. J. et al. Prolonged mitosis of neural progenitors alters cell fate in the developing brain. Neuron 89, 83–99 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Siegrist, S. E. & Doe, C. Q. Microtubule-induced Pins/Gαi cortical polarity in Drosophila neuroblasts. Cell 123, 1323–1335 (2005).

    Article  CAS  PubMed  Google Scholar 

  157. Lough, K. J. et al. Telophase correction refines division orientation in stratified epithelia. eLife 8, e49249 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bergstralh, D. T., Lovegrove, H. E. & St Johnston, D. Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers. Nat. Cell Biol. 17, 1497–1503 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Cammarota, C., Finegan, T. M., Wilson, T. J., Yang, S. & Bergstralh, D. T. An axon-pathfinding mechanism preserves epithelial tissue integrity. Curr. Biol. 30, 5049–5057.e3 (2020). Work by Bergstralh et al. (2015) and Cammarota et al. (2020) identifies pathways used in flies to reincorporate cells that were misplaced due to defects in spindle orientation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wang, S., Cebrian, C., Schnell, S. & Gumucio, D. L. Radial WNT5A-guided post-mitotic filopodial pathfinding is critical for midgut tube elongation. Dev. Cell 46, 173–188.e3 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Wang, S. et al. RYK-mediated filopodial pathfinding facilitates midgut elongation. Development 147, dev195388 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Packard, A. et al. Luminal mitosis drives epithelial cell dispersal within the branching ureteric bud. Dev. Cell 27, 319–330 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Matsuzaki, F. & Shitamukai, A. Cell division modes and cleavage planes of neural progenitors during mammalian cortical development. Cold Spring Harb. Perspect. Biol. 7, a015719 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Seery, J. P. & Watt, F. M. Asymmetric stem-cell divisions define the architecture of human oesophageal epithelium. Curr. Biol. 10, 1447–1450 (2000).

    Article  CAS  PubMed  Google Scholar 

  165. Wu, M. et al. Epicardial spindle orientation controls cell entry into the myocardium. Dev. Cell 19, 114–125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Loeffler, D. et al. Asymmetric lysosome inheritance predicts activation of haematopoietic stem cells. Nature 573, 426–429 (2019). This work shows how asymmetric organelle inheritance can regulate stem cell activation.

    Article  CAS  PubMed  Google Scholar 

  167. Xie, Y., Juschke, C., Esk, C., Hirotsune, S. & Knoblich, J. A. The phosphatase PP4c controls spindle orientation to maintain proliferative symmetric divisions in the developing neocortex. Neuron 79, 254–265 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Postiglione, M. P. et al. Mouse inscuteable induces apical-basal spindle orientation to facilitate intermediate progenitor generation in the developing neocortex. Neuron 72, 269–284 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Jonassen, J. A., San Agustin, J., Baker, S. P. & Pazour, G. J. Disruption of IFT complex A causes cystic kidneys without mitotic spindle misorientation. J. Am. Soc. Nephrol. 23, 641–651 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Jonassen, J. A., San Agustin, J., Follit, J. A. & Pazour, G. J. Deletion of IFT20 in the mouse kidney causes misorientation of the mitotic spindle and cystic kidney disease. J. Cell Biol. 183, 377–384 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Bonucci, M. et al. mTOR and S6K1 drive polycystic kidney by the control of afadin-dependent oriented cell division. Nat. Commun. 11, 3200 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Dumont, N. A. et al. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat. Med. 21, 1455–1463 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Villegas, E. et al. Plk2 regulates mitotic spindle orientation and mammary gland development. Development 141, 1562–1571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wang, X. et al. E-cadherin bridges cell polarity and spindle orientation to ensure prostate epithelial integrity and prevent carcinogenesis in vivo. PLoS Genet. 14, e1007609 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Shafer, M. E. R. et al. Lineage specification from prostate progenitor cells requires Gata3-dependent mitotic spindle orientation. Stem Cell Rep. 8, 1018–1031 (2017).

    Article  CAS  Google Scholar 

  176. Li, H. et al. impaired planar germ cell division in the testis, caused by dissociation of RHAMM from the spindle, results in hypofertility and seminoma. Cancer Res. 76, 6382–6395 (2016).

    Article  CAS  PubMed  Google Scholar 

  177. Hehnly, H. et al. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells. eLife 4, e09384 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Zigman, M. et al. Mammalian inscuteable regulates spindle orientation and cell fate in the developing retina. Neuron 48, 539–545 (2005).

    Article  CAS  PubMed  Google Scholar 

  179. Cayouette, M. & Raff, M. The orientation of cell division influences cell-fate choice in the developing mammalian retina. Development 130, 2329–2339 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant to M.M. from the Italian Association for Cancer Research (AIRC) (IG-25098), and partially supported by the Italian Ministry of Health with Ricerca Corrente and 5×1000 funds. This work was also supported by grants R01-AR067203, R01-DK117981 and R01-AR055926 from the US National Institutes of Health to T.L.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Terry Lechler or Marina Mapelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks S. Kotak and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Kinetochores

Protein complexes that assemble on the centromeres of chromosomes that capture microtubules of the mitotic spindle, allowing chromosome capture and segregation.

Astral microtubules

Populations of microtubules in the mitotic spindle that do not attach to kinetochores. A subset of these interact with the cell cortex and are essential for spindle positioning.

Cell cortex

A layer of actomyosin, F-actin and other cytoplasmic proteins forming on the inner side of the cell membrane and is responsible for the mitotic rounding.

Neuroblasts

Neural stem cells in Drosophila melanogaster development.

Dynamic instability

A dynamical switch between growing and shrinking phases occurring at the microtubule plus and minus ends.

Xmap215/Stu2 family proteins

Xmap215 in frogs (named Stu2 in budding yeast and TOG in human cells) is a protein containing TOG domains that bind tubulin and regulate microtubule dynamics, primarily by promoting microtubule growth.

CLIP-170

Cytoplasmic linker protein 170, a protein containing two CAP-Gly domains binding to tubulin.

CDK1

Cyclin-dependent-kinase 1, a kinase activated by cyclin B to promote G2–M transition. It is then inactivated upon bipolar kinetochore attachment by APC-dependent degradation of cyclin B, which promotes metaphase to anaphase transition.

CAP-Gly-containing proteins

Proteins containing a cytoskeleton-associated protein glycine-rich domain associating with EEY motifs.

Dynactin

A macromolecular complex of 23 subunits acting as a cofactor for the microtubule motor cytoplasmic dynein 1.

Heterotrimeric G proteins

Membrane-associated G proteins consisting of trimers of Gα–Gβ–Gγ subunits, with a GTPase Gα subunit. Upon extracellular stimulation, transmembrane G-protein-coupled receptors act as a guanine nucleotide exchange factor for the Gα subunits, resulting in G-protein signalling activation.

Dynein adaptor

A coiled-coil protein promoting the formation of dynein–dynactin complexes and the processive movements of the dynein complex on the microtubule tracks.

Tetratricopeptide-repeat (TPR) domain

Thirty-four-residue-long repeats consisting of two antiparallel helices connected by a short loop, generally organized in superhelical arrays.

GoLoco motifs

Nineteen-residue-long motifs found in G-protein regulators acting as guanine-dissociation inhibitors of Gαi.

G-protein-coupled receptor

(GPCR). A cell surface seven-pass-transmembrane receptor activating cellular response upon binding to extracellular signalling molecules.

TOG domains

Conserved tubulin-binding domains consisting of six HEAT (that is, helix–turn–helix repeats present in huntingtin, elongation factor 3, protein phosphatase PP2A and the kinase Tor1) repeats.

4.1R

A member of the F-actin-binding 4.1 family that binds to NuMA in mitosis.

CC1-like box motif

A motif conforming to the CC1 box present in several dynein-activating adaptors but carrying a frameshift in the position of the Ala-Ala doublet and lacking the Gly in the central A-A-X-X-G sequence.

Aurora A

A mitotic kinase activated by microtubule-associated protein TPX2 that assists mitotic progression by phosphorylating key substrates at the spindle poles.

PLK1

Polo-like kinase 1, a centrosomal kinase promoting spindle pole maturation and spindle assembly.

Ran–GTP

A small G protein that plays roles in nuclear import and export as well as in regulating chromatin-dependent microtubule nucleation in mitosis.

Non-canonical WNT signalling

Signalling through secreted WNT proteins that activate pathways other than stabilization of β-catenin.

Mother centrosome

Centrosomes consist of a pair of centrioles and the pericentriolar material. The mother centrosome contains one centriole that is more than one cell cycle old, and another that was assembled during the current cell cycle, while the daughter centrosomes contain one centriole that was assembled in the previous cell cycle and one that was assembled in the current cell cycle.

Nectin

A cell–cell adhesion molecule organizing epithelial junctions and interacting intracellularly with the F-actin-binding protein afadin.

ERM (ezrin–radixin–moesin) family proteins

Conserved proteins consisting of a FERM domain interacting with membrane-associated proteins and an F-actin-binding domain crossliking actin filaments at the mitotic cortex. Moesin codes for a microtubule-binding domain stabilizing astral microtubules at the cortex.

Ste20-like kinase

A Ser/Thr kinase that in mitosis activates ERM (ezrin–radixin–moesin) proteins to promote spindle orientation via LGN–NuMA cortical enrichment.

Myosin X

A microtubule-binding myosin with an unconventional dimeric motor domain.

Caveola

An invagination of the plasma membrane about 50–100 nm in diameter that has been implicated in clathrin-independent endocytosis. In addition, subcortical caveolin-rich patches generate a proteinaceous platform for astral microtubule anchoring and mechanotransduction.

Focal adhesion

Integrin-containing macromolecular complexes mediating mechanical contacts between intracellular F-actin and the extracellular matrix.

Basement membrane

A thin flexible sheet-like extracellular matrix found between the basal site of epithelial layers and connective tissues, providing support and signalling.

Catenins

A family of proteins that bind to the intracellular portion of cadherins at adherens junctions and to the actin cytoskeleton.

Notum

The dorsal portion of the thoracic segment of insects.

Scribble polarity complex

A macromolecular complex consisting of the evolutionarily conserved proteins Scribble, DLG and LGL localizing at the cytoplasmic site of the lateral membrane in polarized epithelial cells.

Epiboly

One of the types of cell movement occurring during zebrafish gastrulation.

VEGF

Vascular endothelial growth factor, a growth factor that promotes angiogenesis.

Immune synapse

The site of connection between an antigen-presenting cell and a T or B lymphocyte.

Intermediate filament cytoskeleton

A cytoskeleton element comprising filaments (8–10 nm thick) made up of diverse and cell type-specific proteins, such as keratins and vimentin.

Primary cilium

A microtubule-based structure that extends from the cell and that can act as a sensory antenna and signalling centre.

Polar body

A small haploid cell that results from meiotic divisions of the oocyte.

Chudley–McCollough syndrome

An autosomal recessive condition characterized by hearing loss and brain malformations.

Stereocilia

F-actin-rich protrusions of hair cells of the inner ear that sense fluid flow and are essential for hearing and balance.

Planar cell polarity

Polarization of a field of cells within the plane of the cell sheet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lechler, T., Mapelli, M. Spindle positioning and its impact on vertebrate tissue architecture and cell fate. Nat Rev Mol Cell Biol 22, 691–708 (2021). https://doi.org/10.1038/s41580-021-00384-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-021-00384-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing