Skip to main content
Log in

Long-Term Consequences of the Effect of Copper and an Electromagnetic Field on the Size and Weight Parameters and Activity of Digestive Glycosidases in Underyearlings of Roach Rutilus rutilus

  • ECOLOGICAL PHYSIOLOGY AND BIOCHEMISTRY OF AQUATIC ORGANISMS
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

The long-term (postponed) consequences of the separate and combined effects of Cu2+ ions (0.001, 0.01, and 0.1 mg/L) and a low-frequency electromagnetic field (50 Hz, 10 μT) on roach Rutilus rutilus (L.) embryos have been studied, bringing to light the exposure to these factors to changes in the size and weight parameters, the activity of glycosidases (sucrase, maltase, and amylolytic activity), and the kinetic characteristics of maltose hydrolysis in the intestines of underyearlings exposed at a stage of embryos. Increased body weight, body length, and intestine length are revealed in fish exposed to the electromagnetic field and the combined treatment of an electromagnetic field and Cu2+ ions. Compared with the control, the activities of sucrase and maltase are higher, while the amylolytic activity is lower in roach exposed to different combinations of the factors. The electromagnetic field compensates the inhibitory influence of Cu2+ on amylolytic and maltase activity. The values ​​of the Michaelis constant (Km) of maltose hydrolysis in the intestines of underyearlings exposed to these impacts exceed those in the control. This result indicates a decrease in the enzyme affinity for the substrate, probably caused by the separate and combined influence of Cu2+ and the electromagnetic field on the roach during early development. These results are important for assessing environmental risks in industrial areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Chidiebere, E.E., Acute toxicity of copper and zinc and their lethal concentration on Clarias gariepinus (cat fish), Biomed. J. Sci. Tech. Res., 2019, vol. 17, no. 5, p. 13160. https://doi.org/10.26717/BJSTR.2019.17.003076

    Article  Google Scholar 

  2. Fey, D.P., Greszkiewicz, M., Jakubowska, M., et al., Otolith fluctuating asymmetry in larval trout, Oncorhynchus mykiss Walbaum, as an indication of organism bilateral instability affected by static and alternating magnetic fields, Sci. Total Environ., 2020, vol. 707, p. 135489. https://doi.org/10.1016/j.scitotenv.2019.135489

    Article  CAS  PubMed  Google Scholar 

  3. Filippov, A.A., Aminov, A.I., Golovanova, I.L., et al., Effect of magnetic storm on the sensitivity of juvenile roach intestinal glycosidase to heavy metals (Cu, Zn) and the herbicide roundup, Inland Water Biol., 2015, vol. 8, no. 4, p. 417. https://doi.org/10.1134/S1995082915040070

    Article  Google Scholar 

  4. Fırat, O. and Kargın, F., Response of Cyprinus carpio to copper exposure: alterations in reduced glutathione, catalase and proteins electrophoretic patterns, Fish Physiol. Biochem., 2010, vol. 36, no. 4, p. 102.

    Google Scholar 

  5. Golovanova, I.L., Filippov, A.A., Krylov, V.V., et al., Effect of a magnetic field and copper upon activity of hydrolytic enzymes in roach (Rutilus rutilus) underyearlings, J. Ichthyol., 2013, vol. 53, no. 3, p. 225. https://doi.org/10.1134/S0032945213020045

    Article  Google Scholar 

  6. Golovanova, I.L., Filippov, A.A., Chebotareva, Yu.V., et al., Effect of a shift in diurnal geomagnetic variation on the activity and sensitivity of digestive glycosidases in roach underyearlings to heavy metals, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 11, p. 1623. https://doi.org/10.1134/S0001433819110033

    Article  Google Scholar 

  7. Grossel, M., McDonald, M., Wood, C.M., and Walsh, P.J., Effects of prolonged copper exposure in the marine gulf toadfish (Opsanus beta). I. Hydromineral balance and plasma nitrogenous waste product, Aquat. Toxicol., 2014, vol. 68, no. 3, p. 249.

    Article  Google Scholar 

  8. Jezierska, B., Ługowska, K., and Witeska, M., The affects of heavy metals on embryonic development of fish (a review), Fish Physiol. Biochem., 2009, vol. 35, no. 4, p. 625.

    Article  CAS  Google Scholar 

  9. Jiang, H., Kong, X., Wang, S., and Guo, H., Effect of copper on growth, digestive and antioxidant enzyme activities of juvenile Qihe crucian carp, Carassius carassius, during exposure and recovery, Bull. Environ. Contam. Toxicol., 2016, vol. 96, no. 3, p. 333. https://doi.org/10.1007/s00128-016-1738-2

    Article  CAS  PubMed  Google Scholar 

  10. Karpenko, L.Yu., Polistovskaya, P.A., and Enukashvili, A.I., The influence of heavy metals on the mechanical strength of carp intestinal epithelium, Aktual. Vopr. Vet. Biol., 2019, no. 1 (41), p. 41.

  11. Kavet, R., Wyman, M.T., and Klimley, A.P., Modeling magnetic fields from a dc power cable buried beneath San Francisco Bay based on empirical measurements, PLoS One, 2016, vol. 11. https://doi.org/10.1371/journal.pone.0148543

  12. Khoshroo, M.M.-Z., Mehrjan, M.S., Samiee, F., et al., Some immunological responses of common carp (Cyprinus carpio) fingerling to acute extremely low-frequency electromagnetic fields (50 Hz), Fish Physiol. Biochem., 2018, vol. 44, no. 1, p. 235. https://doi.org/10.1007/s10695-017-0429-1

    Article  CAS  PubMed  Google Scholar 

  13. Krylov, V.V., Chebotareva, Y.V., and Izyumov, Yu.G., Delayed consequences of extremely low-frequency magnetic fields and the influence of adverse environmental conditions on roach Rutilus rutilus embryos, J. Fish. Biol., 2016, vol. 88, no. 4, p. 1283. https://doi.org/10.1111/jfb.12869

    Article  CAS  PubMed  Google Scholar 

  14. Krylov, V.V., Chebotareva, Y.V., and Izyumov, Yu.G., Delayed consequences of the influence of simulated geomagnetic storms on roach Rutilus rutilus embryos, J. Fish. Biol., 2019, vol. 95, no. 6, p. 1422. https://doi.org/10.1111/jfb.14150

    Article  PubMed  Google Scholar 

  15. Kryukov, V.I., Induction of micronuclei in carp erythrocytes under the combined action of copper ions and a low-frequency alternating electromagnetic field, Biol. S.-Kh., 2018, no. 2 (19), p. 17.

  16. Kuz’mina, V.V., Fiziologiya pitaniya ryb. Vliyanie vneshnikh i vnutrennikh faktorov (Physiology of Fish Nutrition. The Influence of External and Internal Factors), Yaroslavl: Printkhaus, 2008.

  17. Kuz’mina, V.V., Digestion in Fish: A New View, Balty: Lambert, 2017.

  18. Lange, N.O., Dmitrieva, E.N., and Islamgazieva, R.B., Features of Aspius aspius (L.) development in the lower reaches of the Ural River, in Osobennosti razvitiya ryb v razlichnykh estestvennykh i eksperimental’nykh usloviyakh (Features of Fish Development in Various Natural and Experimental Conditions), Moscow: Nauka, 1975.

  19. Mahrosh, U., Kleiven, M., Meland, S., et al., Toxicity of road deicing salt (NaCl) and copper (Cu) to fertilization and early developmental stages of Atlantic salmon (Salmo salar), J. Hazard. Mater., 2014, vol. 280, p. 331.

    Article  CAS  Google Scholar 

  20. Moiseenko, T.I., Bioavailability and ecotoxicity of metals in aquatic systems: critical contamination levels, Geochem. Int., 2019, vol. 57, no. 7, p. 737.

    Article  CAS  Google Scholar 

  21. Ohman, M.C., Sigray, P., and Westerberg, H., Offshore windmills and the effects of electromagnetic fields on fish, AMBIO, 2007, vol. 36, p. 630.

    Article  Google Scholar 

  22. Ostroumova, I.N., Biologicheskie osnovy kormleniya ryb (Biological Bases of Fish Nutrition), St. Petersburg: Gos. Nauchno-Issled. Inst. Ozern. Rechn. Rybn. Khoz., 2012.

  23. Outa, J.O., Kowenje, C.O., Avenant-Oldewage, A., and Jirsa, F., Trace elements in crustaceans, mollusks and fish in the Kenyan part of Lake Victoria: bioaccumulation, bioindication and health risk analysis, Arch. Environ. Contam. Toxicol., 2020, vol. 78, no. 4, p 589. 589. https://doi.org/10.1007/s00244-020-00715-0

  24. Perechen’ rybokhozyaistvennykh normativov, predel’no dopustimykh kontsentratsii (PDK) i orientirovochno bezopasnykh urovnei vozdeistviya (OBUV) vrednykh veshchestv dlya vody vodnykh ob"ektov, imeyushchikh rybokhozyaistvennoe znachenie (List of Fishery Standards, Maximum Permissible Concentrations (MPC) and Tentatively Safe Exposure Levels (TSEL) of Harmful Substances for Water of Water Bodies of Fishery Importance), Moscow: Vseross. Nauchno-Issled. Inst. Rybn. Khoz. Okeanograf., 1999.

  25. Samiee, F. and Samiee, K., Effect of extremely low frequency electromagnetic field on brain histopathology of Caspian sea Cyprinus carpio, Electromagn. Biol. Med., vol. 36. https://doi.org/10.3109/15368378.2016.1144064

  26. Sfakianakis, D.G., Renieri, E., Kentouri, M., and Tsatsakis, A.M., Effect of heavy metals on fish larvae deformities: a review, Environ. Res., 2015, vol. 137, p. 246, no. 1, p. 31. https://doi.org/10.1016/j.envres.2014.12.014

  27. Solovyev, M. and Gisbert, E., Influence of time, storage temperature and freeze/thaw cycles on the activity of digestive enzymes from gilthead sea bream (Sparus aurata), Fish Physiol. Biochem., 2016, vol. 42, no. 5, p. 1383.

    Article  CAS  Google Scholar 

  28. Tan, X.Y., Luo, Z., Liu, X., and Xie, C.X., Dietary copper requirement of juvenile yellow catfish Pelteobagrus fulvidraco, Aquacult. Nutr., 2011, vol. 17, no. 2, p. 170. https://doi.org/10.1111/j.1365-2095.2009.00720.x

    Article  CAS  Google Scholar 

  29. Tang, Q.Q., Feng, L., Jiang, W.D., et al., Effects of dietary copper on growth, digestive, and brush border enzyme activities and antioxidant defense of hepatopancreas and intestine for young grass carp (Ctenopharyngodon idella), Biol. Trace Elem. Res., 2013, vol. 155, no. 3, p. 370. https://doi.org/10.1007/s12011-013-9785-6

    Article  CAS  PubMed  Google Scholar 

  30. Ugolev, A.M., Iezuitova, N.N., Masevich, Ts.G., et al., Issledovanie pishchevaritel’nogo apparata u cheloveka. Obzor sovremennykh metodov (Study of the Human Digestive System: Review of Modern Methods), Leningrad: Nauka, 1969.

  31. Watanabe, T., Kiron, V., and Satoh, S., Trace minerals in fish nutrition, Aquaculture, 1997, vol. 151, nos. 1–4, p. 185.

    Article  CAS  Google Scholar 

  32. Witeska, M. and Ługowska, K., The effect of copper exposure during embryonic development on deformations of newly hatched common carp larvae, and further consequences, Electron. J. Pol. Agricult. Univ., Fisheries, 2004, vol. 7, no. 2.

  33. Witeska, M., Sarnowski, P., Lugowska, K., and Kowal, E., The effects of cadmium and copper on embryonic and larval development of ide Leuciscus idus L., Fish Physiol. Biochem., 2014, vol. 40, no. 1, p. 151. https://doi.org/10.1007/s10695-013-9832-4

    Article  CAS  PubMed  Google Scholar 

  34. Yuan, L., Li, M., Zhang, Yu., and Tao, Z., The protective effects of dietary zinc on dietary copper toxicity in large yellow croaker Larimichthys croceus, Aquaculture, 2016, vol. 462, p. 30. https://doi.org/10.1016/j.aquaculture.2016.04.034

    Article  CAS  Google Scholar 

  35. Zebral, Y.D., Roza, M., Fonseca, J.S., et al., Waterborne copper is more toxic to the killifish Poecilia vivipara in elevated temperatures: linking oxidative stress in the liver with reduced organismal thermal performance, Aquat. Toxicol., 2019, vol. 209, p. 142.

    Article  Google Scholar 

  36. Zhang, J.L., Fang, L., Song, J.Y., et al., Health risk assessment of heavy metals in Cyprinus carpio (Cyprinidae) from the upper Mekong River, Environ. Sci. Pollut. Res., 2019, vol. 26, no. 10, p. 9490. https://doi.org/10.1007/s11356-019-04291-2

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out as part of State Task nos. АААА-А18-118012690102-9 and АААА-А18-118012690222-4, as well as with partial support from the Presidium of the Russian Academy of Sciences, project 0122-2018-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Golovanova.

Additional information

Abbreviations: AA, amylolytic activity; EMF, electromagnetic field.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovanova, I.L., Filippov, A.A., Chebotareva, Y.V. et al. Long-Term Consequences of the Effect of Copper and an Electromagnetic Field on the Size and Weight Parameters and Activity of Digestive Glycosidases in Underyearlings of Roach Rutilus rutilus . Inland Water Biol 14, 331–339 (2021). https://doi.org/10.1134/S1995082921020048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082921020048

Keywords:

Navigation