Skip to main content

Advertisement

Log in

A Novel Strategy to Fabricate Core-Sheath Structure Piezoelectric Yarns for Wearable Energy Harvesters

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Wearable and portable electronic devices based on textile structure have been widely used owing to their wearability and comfortableness. However, yarn fineness and the comfort of the fabric cannot satisfy the requirements of smart wearable devices. This work presents a novel strategy to prepare highly integrated PVDF/conductive nylon core-sheath structure piezoelectric yarns for wearable which is fabricated by combining electrospinning strategy with 2D braiding technology. The fineness of single yarns as well as strength are both improved significantly compared to previous works. The piezoelectric outputs of the yarn are still stable after 800 s fatigue test at a frequency of 4 Hz, and the cycle stability can maintain more than 3200 cycles. Furthermore, the piezoelectric yarns are further woven into piezoelectric plain fabric. According to the electrical performance, the length of the piezoelectric yarn and the thickness of the piezoelectric layer would both affect the output electrical performance. The yarn of the 10 cm in length and 600 μm in fineness can produce an output voltage of 120 mV. Meanwhile, Both the piezoelectric yarn and the fabric could generate piezoelectric output signals through human movement, such as bending, walking. Therefore, the electrical and mechanical performance of the piezoelectric yarns prepared in our work could be improved significantly, and the comfortableness and durability performance of the piezoelectric fabric can satisfy most wearing requirements, which would provide some help in the field of piezoelectric wearable devices based on yarns and fabrics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sang M, Wang S, Liu S, Liu M, Bai LF, Jiang WQ, Xuan SH, Gong XL. A hydrophobic, self-powered, electromagnetic shielding PVDF-based wearable device for human body monitoring and protection. ACS Appl Mater Inter. 2019;11:47340–9.

    Article  CAS  Google Scholar 

  2. Wang W, Cao J, Yu J, Liu R, Bowen CR, Liao WH. Self-powered smart insole for monitoring human gait signals. Sensors. 2019;19:5336.

    Article  Google Scholar 

  3. Gao HP, Asheghali D, Yadavalli NS, Pham MT, Nguyen TD, Minko S, Sharma S. Fabrication of core-sheath nanoyarn via touchspinning and its application in wearable piezoelectric nanogenerator. J Text Inst. 2019;111:906–15.

    Article  Google Scholar 

  4. Wang XW, Liu Z, Zhang T. Flexible sensing electronics for wearable/attachable health monitoring. Small. 2017;13:1602790.

    Article  Google Scholar 

  5. Dong K, Peng X, Wang ZL. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv Mater. 2020;32:1902549.

    Article  CAS  Google Scholar 

  6. Chen XL, Shao JY, An NL, Li XM, Tian HM, Xu C, Ding YC. Self-powered flexible pressure sensors with vertically well-aligned piezoelectric nanowire arrays for monitoring vital signs. J Mater Chem C. 2015;3:11806–14.

    Article  CAS  Google Scholar 

  7. Shi Q, Sun J, Hou C, Li Y, Wang H. Advanced functional fiber and smart textile. Adv Fiber Mater. 2019;1:3–31.

    Article  Google Scholar 

  8. Wang XX, Song WZ, You MH, Zhang J, Yu M, Fan ZY, Ramakrishna S, Long YZ. Bionic single-electrode electronic skin unit based on piezoelectric nanogenerator. ACS Nano. 2018;12:8588–96.

    Article  CAS  Google Scholar 

  9. Yuan L, Fan W, Yang X, Ge S, Su SL. Piezoelectric PAN/BaTiO3 nanofiber membranes sensor for structural health monitoring of real-time damage detection in composite. Compos Commun. 2021;25:100680.

    Article  Google Scholar 

  10. Huang R, Zheng SJ, Liu ZS, Ng TY. Recent advances of the constitutive models of smart materials—hydrogels and shape memory polymers. Int J Appl Mech. 2020;12:2050014.

    Article  Google Scholar 

  11. Lee JH, Yoon HJ, Kim TY, Gupta MK, Lee JH, Seung W, Ryu H, Kim SW. Micropatterned P(VDF-TrFE) film-based piezoelectric nanogenerators for highly sensitive self-powered pressure sensors. Adv Funct Mater. 2015;25:3203–9.

    Article  CAS  Google Scholar 

  12. Ai YF, Lou Z, Chen S, Chen D, Wang ZMM, Jiang K, Shen GZ. All rGO-on-PVDF-nanofibers based self-powered electronic skins. Nano Energy. 2017;35:121–7.

    Article  CAS  Google Scholar 

  13. Chen YN, Feng RX, Li YS, Dan NH, Yang CK, Yu GF, Huang YP, Wen HT, Dan WH. Development and analysis of a novel PVDF membrane with higher content of beta phase. Int J Polym Anal Ch. 2019;24:684–95.

    Article  CAS  Google Scholar 

  14. Jin L, Zheng Y, Liu ZK, Li JS, Zhai R, Chen ZD, Li Y. Design of an ultrasensitive flexible bend sensor using a silver-doped oriented Poly(vinylidene fluoride) nanofiber web for respiratory monitoring. ACS Appl Mater Inter. 2020;12:1359–67.

    Article  CAS  Google Scholar 

  15. Mandal D, Henkel K, Schmeisser D. The electroactive beta-phase formation in Poly(vinylidene fluoride) by gold nanoparticles doping. Mater Lett. 2012;73:123–5.

    Article  CAS  Google Scholar 

  16. Satyanarayana KC, Bolton K. Molecular dynamics simulations of alpha- to beta-poly(vinylidene fluoride) phase change by stretching and poling. Polymer. 2012;53:2927–34.

    Article  Google Scholar 

  17. Wang WY, Zheng YD, Jin X, Sun Y, Lu BB, Wang HX, Fang J, Shao H, Lin T. Unexpectedly high piezoelectricity of electrospun polyacrylonitrile nanofiber membranes. Nano Energy. 2019;56:588–94.

    Article  CAS  Google Scholar 

  18. Kim J, Byun S, Lee S, Ryu J, Cho S, Oh C, Kim H, No K, Ryu S, Lee YM, Hong S. Cost-effective and strongly integrated fabric-based wearable piezoelectric energy harvester. Nano Energy. 2020;75:104992.

    Article  CAS  Google Scholar 

  19. Wu CM, Chou MH. Acoustic-electric conversion and piezoelectric properties of electrospun polyvinylidene fluoride/silver nanofibrous membranes. Express Polym Lett. 2020;14:103–14.

    Article  CAS  Google Scholar 

  20. Yang E, Xu Z, Chur LK, Behroozfar A, Baniasadi M, Moreno S, Huang J, Gilligan J, Minary-Jolandan M. Nanofibrous smart fabrics from twisted yarns of electrospun piezopolymer. ACS Appl Mater Inter. 2017;9:24220–9.

    Article  CAS  Google Scholar 

  21. Park S, Kwon Y, Sung M, Lee BS, Bae J, Yu WR. Poling-free spinning process of manufacturing piezoelectric yarns for textile applications. Mater Des. 2019;179:107889.

    Article  CAS  Google Scholar 

  22. Ji SH, Cho YS, Yun JS. Wearable core-shell piezoelectric nanofiber yarns for body movement energy harvesting. Nanomaterials. 2019;9:555.

    Article  CAS  Google Scholar 

  23. Kechiche MB, Bauer F, Harzallah O, Drean JY. Development of piezoelectric coaxial filament sensors P(VDF-TrFE)/copper for textile structure instrumentation. Sens Actuator A-Phys. 2013;204:122–30.

    Article  CAS  Google Scholar 

  24. Qin Y, Wang XD, Wang ZL. Microfibre-nanowire hybrid structure for energy scavenging. Nature. 2008;451:809-U5.

    Article  CAS  Google Scholar 

  25. Du YZ, Fu CK, Gao YZ, Liu L, Liu YW, Xing LX, Zhao F. Carbon fibers/ZnO nanowires hybrid nanogenerator based on an insulating interface barrier. RSC Adv. 2017;7:21452–8.

    Article  CAS  Google Scholar 

  26. Martins P, Lopes AC, Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog in Polym Sci. 2014;39:683–706.

    Article  CAS  Google Scholar 

  27. Karan SK, Bera R, Paria S, Das AK, Maiti S, Maitra A, Khatua BB. An approach to design highly durable piezoelectric nanogenerator based on self-poled PVDF/AlO-rGO flexible nanocomposite with high power density and energy conversion efficiency. Adv Energy Mater. 2016;6:1601016.

    Article  Google Scholar 

  28. Kanik M, Aktas O, Sen HS, Durgun E, Bayindir M. Spontaneous high piezoelectricity in Poly(vinylidene fluoride) nanoribbons produced by iterative thermal size reduction technique. ACS Nano. 2014;8:9311–23.

    Article  CAS  Google Scholar 

  29. Karan SK, Maiti S, Agrawal AK, Das AK, Maitra A, Paria S, Bera A, Bera R, Halder L, Mishra AK, Kim JK, Khatua BB. Designing high energy conversion efficient bio-inspired vitamin assisted single-structured based self-powered piezoelectric/wind/acoustic multi-energy harvester with remarkable power density. Nano Energy. 2019;59:169–83.

    Article  CAS  Google Scholar 

  30. Lee BS, Park B, Yang HS, Han JW, Choong C, Bae J, Lee K, Yu WR, Jeong U, Chung UI, Park JJ, Kim O. Effects of substrate on piezoelectricity of electrospun Poly(vinylidene fluoride)-nanofiber-based energy generators. ACS Appl Mater Inter. 2014;6:3520–7.

    Article  CAS  Google Scholar 

  31. Sun QL, Sun L, Wang FF, Gu H. Effect of hot-pressing on properties of Bubble-electrospun nanofiber membrane. Therm Sci. 2017;21:1633–7.

    Article  Google Scholar 

  32. Figoli A, Ursino C, Ramirez DOS, Carletto RA, Tonetti C, Varesano A, De Santo MP, Cassano A, Vineis C. Fabrication of electrospun keratin nanofiber membranes for air and water treatment. Polym Eng Sci. 2019;59:1472–8.

    Article  CAS  Google Scholar 

  33. Sheng JL, Zhang M, Xu Y, Yu JY, Ding B. Tailoring water-resistant and breathable performance of Polyacrylonitrile nanofibrous membranes modified by Polydimethylsiloxane. ACS Appl Mater Inter. 2016;8:27218–26.

    Article  CAS  Google Scholar 

  34. Rodrigues A, Figueiredo L, Bordado J. Abrasion behaviour of polymeric textiles for endovascular stent-grafts. Tribol Int. 2013;63:265–74.

    Article  CAS  Google Scholar 

  35. Uzun M, Govarthanam KK, Rajendran S, Sancak E. Interaction of a non-aqueous solvent system on bamboo, cotton, polyester and their blends: the effect on abrasive wear resistance. Wear. 2015;322:10–6.

    Article  Google Scholar 

  36. Wortmann M, Frese N, Hes L, Golzhauser A, Moritzer E, Ehrmann A. Improved abrasion resistance of textile fabrics due to polymer coatings. J Ind Text. 2019;49:572–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from National Natural Science Foundation, China (Nos. 52073224, 51703179), National Key Research and Development Program of China (No. 2019YFA0706801), Innovation Capacity Support Plan of Shaanxi, China (No. 2020PT-043), Scientific and Technology Project for Overseas Students of Shaanxi, China (No. 12), Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No: 18JS041), and Thousand Talents Program of Shaanxi Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Fan or Qi Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, L., Fan, W., Yu, Y. et al. A Novel Strategy to Fabricate Core-Sheath Structure Piezoelectric Yarns for Wearable Energy Harvesters. Adv. Fiber Mater. 3, 239–250 (2021). https://doi.org/10.1007/s42765-021-00081-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00081-z

Keywords

Navigation