Skip to main content
Log in

An Insight from the CALPHAD Approach: How to Control the LaMnO3 Perovskite Formation Via the Molten Salt Synthesis

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

LiCl-KCl molten salt has been used as a reaction medium to synthesize various perovskite materials from oxide precursors. However, it was observed that temperature, p(O2), precursor mix ratio, etc., greatly affected the perovskite stoichiometry, phase stability, crystal structure, and the formation of various impurities (secondary phases). Thermodynamics and kinetics involved in the synthesis are complicated. Guidance from thermodynamic modeling is thus needed to control the formation of the perovskites. In the present work, for the first time we use the CALculation of PHAse Diagram (CALPHAD) approach to develop a perovskite-molten salt thermodynamic database, which is used to understand the phase equilibrium between the molten salt, precursor oxides, and the resulting LaMnO3 (LMO) perovskite. Especially, the effects of temperature, La2O3 and Mn2O3 precursor ratio, and p(O2) on the LMO phase stability were predicted. Pseudo-ternary isothermal sections were generated, which successfully predicted the coexistence of LaMnO3 and the impurity, LaOCl. Meanwhile, the molten salt thermodynamic experiments were designed and carried out to verify La and Mn's solubilities in LiCl-KCl molten salt and thermodynamic equilibria in the La-Mn-O-Li-K-Cl system. The CALPHAD predictions were in accord with the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Chroneos, R. Vovk, I. Goulatis, and L. Goulatis, Oxygen Transport in Perovskite and Related Oxides: A Brief Review, J. Alloy. Compd., 2010, 494(1–2), p 190–195.

    Article  Google Scholar 

  2. J. Shi, and L. Guo, ABO3-based Photocatalysts for Water Splitting, Progress Nat. Sci. Mater. Int., 2012, 22(6), p 592–615.

    Article  MathSciNet  Google Scholar 

  3. C. Moure, and O. Peña, Recent Advances in Perovskites: Processing and Properties, Prog. Solid State Chem., 2015, 43(4), p 123–148.

    Article  Google Scholar 

  4. E. Grabowska, Selected Perovskite Oxides: Characterization, Preparation and Photocatalytic Properties—a Review, Appl. Catal. B, 2016, 186, p 97–126.

    Article  Google Scholar 

  5. M. Alifanti, R. Auer, J. Kirchnerova, F. Thyrion, P. Grange, and B. Delmon, Activity in Methane Combustion and Sensitivity to Sulfur Poisoning of La1−xCexMn1−yCoyO3 Perovskite Oxides, Appl. Catal. B, 2003, 41(1–2), p 71–81.

    Article  Google Scholar 

  6. N. Labhsetwar, R. Biniwale, R. Kumar, S. Rayalu, and S. Devotta, Application of Supported Perovskite-Type Catalysts for Vehicular Emission Control, Catal. Surv. Asia, 2006, 10(1), p 55–64.

    Article  Google Scholar 

  7. A. Kaddouri, S. Ifrah, and P. Gelin, A Study of the INFLUENCE of the Synthesis Conditions upon the Catalytic Properties of LaMnO3.15 in Methane Combustion in the Absence and Presence of H 2 S, Cat. Lett., 2007, 119(3–4), p 237–244.

    Article  Google Scholar 

  8. E. Dagotto, Nanoscale phase separation and colossal magnetoresistance: the physics of manganites and related compounds. Springer, Berlin, 2013.

    Google Scholar 

  9. T. Ishihara, Perovskite oxide for solid oxide fuel cells. Springer, Berlin, 2009.

    Book  Google Scholar 

  10. Y.-L. Huang, C. Pellegrinelli, and E.D. Wachsman, Reaction Kinetics of Gas-Solid Exchange Using Gas Phase Isotopic Oxygen Exchange, ACS Catal., 2016, 6(9), p 6025–6032.

    Article  Google Scholar 

  11. A. Banerjee, and O. Deutschmann, Elementary Kinetics of the Oxygen Reduction Reaction on LSM-YSZ Composite Cathodes, J. Catal., 2017, 346, p 30–49.

    Article  Google Scholar 

  12. J.H.R.R.H. Arendt, and J.W. Szymaszek, Lead Zirconate Titanate Ceramics from Molten Salt Solvent Synthesized Powders, Mater. Res. Bull., 1979, 14(5), p 703–709.

    Article  Google Scholar 

  13. X. Liu, N. Fechler, and M. Antonietti, Salt Melt Synthesis of Ceramics, Semiconductors and Carbon Nanostructures, Chem. Soc. Rev., 2013, 42(21), p 8237–8265.

    Article  Google Scholar 

  14. F. Luo, Y.-H. Huang, C.-H. Yan, S. Jiang, X.-H. Li, Z.-M. Wang, and C.-S. Liao, Molten Alkali Metal Nitrate Flux to Well-Crystallized and Homogeneous La0.7Sr0.3MnO3 Nanocrystallites, J. Magnet. Magnet. materials, 2003, 260(1–2), p 173–180.

    Article  ADS  Google Scholar 

  15. L. Vradman, J. Zana, A. Kirschner, and M. Herskowitz, Synthesis of LaMnO3 in Molten Chlorides: Effect of Preparation Conditions, Phys. Chem. Chem. Phys., 2013, 15(26), p 10914–10920.

    Article  Google Scholar 

  16. M. Kačenka, O. Kaman, Z. Jirák, M. Maryško, P. Žvátora, S. Vratislav, and I. Lukeš, Magnetic Properties of La1− xSrxMnO3 Nanoparticles Prepared in a Molten Salt, J. Appl. Phys., 2014, 115(17), p 17B525.

    Article  Google Scholar 

  17. Y. Wang, S. Xie, J. Deng, S. Deng, H. Wang, H. Yan, and H. Dai, Morphologically Controlled Synthesis of Porous Spherical and Cubic LaMnO3 with High Activity for the Catalytic Removal of Toluene, ACS Appl. Mater. Interfaces., 2014, 6(20), p 17394–17401.

    Article  Google Scholar 

  18. L. Kaufman, H. Bernstein, Computer calculation of phase diagrams. With special reference to refractory metals (1970). https://inis.iaea.org/search/search.aspx?orig_q=RN:2004171 and https://www.amazon.com/calculation-reference-refractory-Refractory-materials/dp/012402050X.

  19. A. Kroupa, Modelling of Phase Diagrams and Thermodynamic Properties Using Calphad method–Development of Thermodynamic Databases, Comput. Mater. Sci., 2013, 66, p 3–13.

    Article  Google Scholar 

  20. K.H.T. Tanaka, T. Iida, and S. Hara, Application of Thermodynamic Databases to the Evaluation of Surface Tensions of Molten Alloys, Salt Mixt. Oxide Mixt. Zeitschrift für Metallkunda, 1996, 87(5), p 380–389.

    Google Scholar 

  21. S. Fujiwara, M. Inaba, and A. Tasaka, New Molten Salt Systems for High Temperature Molten Salt Batteries: Ternary and Quaternary Molten Salt Systems Based on LiF–LiCl, LiF–LiBr, and LiCl–LiBr, J. Power Sources, 2011, 196(8), p 4012–4018.

    Article  ADS  Google Scholar 

  22. S. Darvish, H. Sabarou, S.K. Saxena, and Y. Zhong, Quantitative Defect Chemistry Analysis and Electronic Conductivity Prediction of La0.8Sr0.2MnO3+/-delta Perovskite, J. Electrochem. Soc., 2015, 162(9), p 134–140.

    Article  Google Scholar 

  23. S. Darvish, M. Asadikiya, B. Hu, P. Singh, and Y. Zhong, Thermodynamic Prediction of the Effect of CO2 to the Stability of (La0.8Sr0.2)0.98MnO3±δ System, Int. J. Hydr. Energy, 2016, 41(24), p 10239–10248.

    Article  Google Scholar 

  24. S. Darvish, S. Gopalan, and Y. Zhong, Thermodynamic Stability Maps for the La0.6Sr0.4Co0.2Fe0.8O3±δ–CO2–O2 System for Application in Solid Oxide Fuel Cells, J. Power Sourc., 2016, 336, p 351–359.

    Article  ADS  Google Scholar 

  25. S. Darvish, Y. Zhong, and S. Gopalan, Thermodynamic Stability of La0.6Sr0.4Co0.2Fe0.8O3-δ in Carbon Dioxide Impurity: a Comprehensive Experimental and Computational Assessment, ECS Trans., 2017, 78(1), p 1021–1025.

    Article  ADS  Google Scholar 

  26. H. Sabarou, S. Darvish, S. Gupta, P. Singh, and Y. Zhong, Thermodynamic Assessment of the Chemical Stability of (La0.8Sr0.2)0.98CrxFe1−xO3±δ Under Oxygen Transport Membrane Fabrication and Operation Conditions, Solid State Ionics, 2017, 310, p 1–9.

    Article  Google Scholar 

  27. C.C. Wang, S. He, K. Chen, M.R. Rowles, S. Darvish, Y. Zhong, and S.P. Jiang, Effect of SO2 Poisoning on the Electrochemical Activity of La0.6Sr0.4Co02Fe0.8O3-δ Cathodes of Solid Oxide Fuel Cells, J. Electrochem. Soc., 2017, 164(6), p 514–524.

    Article  Google Scholar 

  28. S. Darvish, B. Hu, P. Singh, and Y. Zhong, Thermodynamic and Experimental Evaluation of La1−xSrxMnO3±δ Cathode in Presence of Cr-Containing Humidified Air, JOM, 2019, 71, p 3814–3824.

    Article  Google Scholar 

  29. C.C. Wang, S. Darvish, K. Chen, B. Hou, Q. Zhang, Z. Tan, Y. Zhong, and S.P. Jiang, Combined Cr and S Poisoning of La0.8Sr02MnO3-δ (LSM) Cathode of Solid Oxide Fuel Cells, Electrochimica Acta, 2019, 312, p 202–212.

    Article  Google Scholar 

  30. M. Hillert, The Compound Energy Formalism, J. Alloy. Compd., 2001, 320(2), p 161–176.

    Article  Google Scholar 

  31. A.N. Grundy, M. Chen, B. Hallstedt, and L.J. Gauckler, Assessment of the La-Mn-O System, J. Phase Equilib. Diff., 2005, 26(2), p 131–151.

    Article  Google Scholar 

  32. S. Ghosh, B.P. Reddy, K. Nagarajan, and K.C.H. Kumar, Experimental Investigations and Thermodynamic Modelling of KCl–LiCl–UCl3 System, Calphad, 2014, 45, p 11–26.

    Article  Google Scholar 

  33. SGTE Substances Database-SSUB5, ed., Thermo-Calc

  34. O. Redlich, and A.T. Kister, Algebraic Representations of Thermodynamic Properties and the Classification of Solutions, Ind. Eng. Chem., 1948, 40(2), p 345–348.

    Article  Google Scholar 

  35. S. Xu, Y. Moritomo, K. Ohoyama, and A. Nakamura, Neutron Structural Analysis of La1-xSrxMnO3–Variation of One-Electron Bandwidth W with Hole Doping, J. Phys. Soc. Jpn., 2003, 72(3), p 709–712.

    Article  ADS  Google Scholar 

  36. Y. Zhu, Synthesis of Lanthanum chromite-Lanthanum manganite and LSCF-Lanthanum manganite core-shell particles via molten salt route. Boston University, Boston, 2017.

    Google Scholar 

  37. M. Asadikiya, H. Sabarou, M. Chen, and Y. Zhong, Phase Diagram for a Nano-Yttria-Stabilized Zirconia System, Rsc. Adv., 2016, 6(21), p 17438–17445.

    Article  ADS  Google Scholar 

Download references

Acknowledgment

This material is based upon work supported by the Department of Energy under Award Number DE- FE0031205. Useful discussions with Steven Markovich and Shailesh Vora at National Energy Technology Laboratory are acknowledged. This paper was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represented that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Darvish, S., Levitas, B. et al. An Insight from the CALPHAD Approach: How to Control the LaMnO3 Perovskite Formation Via the Molten Salt Synthesis. J. Phase Equilib. Diffus. 42, 419–427 (2021). https://doi.org/10.1007/s11669-021-00895-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-021-00895-9

Keywords

Navigation