Skip to main content

Advertisement

Log in

A Phase I clinical trial of dose-escalated metabolic therapy combined with concomitant radiation therapy in high-grade glioma

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Background

Animal brain-tumor models have demonstrated a synergistic interaction between radiation therapy and a ketogenic diet (KD). Metformin has in-vitro anti-cancer activity, through AMPK activation and mTOR inhibition. We hypothesized that the metabolic stress induced by a KD combined with metformin would enhance radiation’s efficacy. We sought to assess the tolerability and feasibility of this approach.

Methods

A single-institution phase I clinical trial. Radiotherapy was either 60 or 35 Gy over 6 or 2 weeks, for newly diagnosed and recurrent gliomas, respectively. The dietary intervention consisted of a Modified Atkins Diet (ModAD) supplemented with medium chain triglycerides (MCT). There were three cohorts: Dietary intervention alone, and dietary intervention combined with low-dose or high-dose metformin; all patients received radiotherapy. Factors associated with blood ketone levels were investigated using a mixed-model analysis.

Results

A total of 13 patients were accrued, median age 61 years, of whom six had newly diagnosed and seven with recurrent disease. All completed radiation therapy; five patients stopped the metabolic intervention early. Metformin 850 mg three-times daily was poorly tolerated. There were no serious adverse events. Ketone levels were associated with dietary factors (ketogenic ratio, p < 0.001), use of metformin (p = 0. 02) and low insulin levels (p = 0.002). Median progression free survival was ten and four months for newly diagnosed and recurrent disease, respectively.

Conclusions

The intervention was well tolerated. Higher serum ketone levels were associated with both dietary intake and metformin use. The recommended phase II dose is eight weeks of a ModAD combined with 850 mg metformin twice daily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available on request from the corresponding author (Y.R.L).

Abbreviations

KD:

Ketogenic diet

ModAD:

Modified Atkins diet

HGG:

High-grade gliomas

AMPK:

AMP-activated protein kinase

LDL:

Low-density lipoprotein

MCT:

Medium chain triglyceride

β-OHB:

β-hydroxybutyrate

VMAT:

Volumetric modulated arc therapy

HbA1C:

hemoglobin A1C

IGF1:

Insulin like growth factor1

TRAM:

Treatment response assessment maps

BMI:

Body mass index

References

  1. Stupp R, Mason WP, Van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  Google Scholar 

  2. Venneti S, Thompson CB (2017) Metabolic reprogramming in brain tumors. Annu Rev Pathol 12:515–545. https://doi.org/10.1146/annurev-pathol-012615-044329

    Article  CAS  PubMed  Google Scholar 

  3. Rodríguez-García A, Samsó P, Fontova P, Simon-Molas H, Manzano A, Castaño E, Rosa JL, Martinez-Outshoorn U, Ventura F, Navarro-Sabaté À, Bartrons R (2017) TGF-β1 targets Smad, p38 MAPK, and PI3K/Akt signaling pathways to induce PFKFB3 gene expression and glycolysis in glioblastoma cells. Febs j 284:3437–3454. doi:https://doi.org/10.1111/febs.14201

    Article  CAS  PubMed  Google Scholar 

  4. Gong Y, Ma Y, Sinyuk M, Loganathan S, Thompson RC, Sarkaria JN, Chen W, Lathia JD, Mobley BC, Clark SW, Wang J (2016) Insulin-mediated signaling promotes proliferation and survival of glioblastoma through Akt activation. Neuro Oncol 18:48–57. doi:https://doi.org/10.1093/neuonc/nov096

    Article  CAS  PubMed  Google Scholar 

  5. Bao Z, Chen K, Krepel S, Tang P, Gong W, Zhang M, Liang W, Trivett A, Zhou M, Wang JM (2019) High glucose promotes human glioblastoma cell growth by increasing the expression and function of chemoattractant and growth factor receptors. Transl Oncol 12:1155–1163. https://doi.org/10.1016/j.tranon.2019.04.016

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chaichana KL, McGirt MJ, Woodworth GF, Datoo G, Tamargo RJ, Weingart J, Olivi A, Brem H, Quinones-Hinojosa A (2010) Persistent outpatient hyperglycemia is independently associated with survival, recurrence and malignant degeneration following surgery for hemispheric low grade gliomas. Neurol Res 32:442–448. doi:https://doi.org/10.1179/174313209X431101

    Article  PubMed  Google Scholar 

  7. Derr RL, Ye X, Islas MU, Desideri S, Saudek CD, Grossman SA (2009) Association between hyperglycemia and survival in patients with newly diagnosed glioblastoma. J Clin Oncol 27:1082–1086. doi:https://doi.org/10.1200/jco.2008.19.1098

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lu VM, Goyal A, Vaughan LS, McDonald KL (2018) The impact of hyperglycemia on survival in glioblastoma: a systematic review and meta-analysis. Clin Neurol Neurosurg 170:165–169. https://doi.org/10.1016/j.clineuro.2018.05.020

    Article  PubMed  Google Scholar 

  9. Seyfried TN, Flores R, Poff AM, D’Agostino DP, Mukherjee P (2015) Metabolic therapy: a new paradigm for managing malignant brain cancer. Cancer Lett 356:289–300. doi:https://doi.org/10.1016/j.canlet.2014.07.015

    Article  CAS  PubMed  Google Scholar 

  10. Maurer GD, Brucker DP, Bähr O, Harter PN, Hattingen E, Walenta S, Mueller-Klieser W, Steinbach JP, Rieger J (2011) Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy. BMC Cancer 11:315. doi:https://doi.org/10.1186/1471-2407-11-315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter CA, Lim H, Saunders LR, Stevens RD, Newgard CB, Farese RV Jr, de Cabo R, Ulrich S, Akassoglou K, Verdin E (2013) Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339:211–214. doi:https://doi.org/10.1126/science.1227166

    Article  CAS  PubMed  Google Scholar 

  12. Silva-Nichols HB, Rossi AP, Woolf EC, Fairres MJ, Deleyrolle LP, Reynolds BA, Scheck AC (2016) Abstract 1670: Radiosensitization of glioma cells by the ketone body β-hydroxybutyrate is associated with enhanced cell cycle arrest in the G2/M phase. Can Res 76:1670. doi:https://doi.org/10.1158/1538-7445.AM2016-1670

    Article  Google Scholar 

  13. Klement RJ (2019) The influence of ketogenic therapy on the 5 R’s of radiobiology. Int J Radiat Biol 95:394–407. doi:https://doi.org/10.1080/09553002.2017.1380330

    Article  CAS  PubMed  Google Scholar 

  14. Kossoff EH, Dorward JL (2008) The modified atkins diet. Epilepsia 49:37–41. https://doi.org/10.1111/j.1528-1167.2008.01831.x

    Article  CAS  PubMed  Google Scholar 

  15. Abdelwahab MG, Fenton KE, Preul MC, Rho JM, Lynch A, Stafford P, Scheck AC (2012) The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma. PLoS One 7:e36197. doi:https://doi.org/10.1371/journal.pone.0036197

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhou W, Mukherjee P, Kiebish MA, Markis WT, Mantis JG, Seyfried TN (2007) The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer. Nutr Metab (Lond) 4:5. doi:https://doi.org/10.1186/1743-7075-4-5

    Article  CAS  Google Scholar 

  17. Woodhouse C, Ward T, Gaskill-Shipley M, Chaudhary R (2019) Feasibility of a modified Atkins diet in glioma patients during radiation and its effect on radiation sensitization. Curr Oncol 26:e433–e438. doi:https://doi.org/10.3747/co.26.4889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Champ CE, Palmer JD, Volek JS, Werner-Wasik M, Andrews DW, Evans JJ, Glass J, Kim L, Shi W (2014) Targeting metabolism with a ketogenic diet during the treatment of glioblastoma multiforme. Journal of neuro-oncology 117:125–131. doi:https://doi.org/10.1007/s11060-014-1362-0

    Article  CAS  PubMed  Google Scholar 

  19. Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, Inzucchi SE, Schumann WC, Petersen KF, Landau BR, Shulman GI (2000) Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 49:2063–2069. doi:https://doi.org/10.2337/diabetes.49.12.2063

    Article  CAS  PubMed  Google Scholar 

  20. Sambol NC, Chiang J, O’Conner M, Liu CY, Lin ET, Goodman AM, Benet LZ, Karam JH (1996) Pharmacokinetics and pharmacodynamics of metformin in healthy subjects and patients with noninsulin-dependent diabetes mellitus. J Clin Pharmacol 36:1012–1021

    Article  CAS  Google Scholar 

  21. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174. doi:https://doi.org/10.1172/jci13505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kalender A, Selvaraj A, Kim SY, Gulati P, Brûlé S, Viollet B, Kemp BE, Bardeesy N, Dennis P, Schlager JJ, Marette A, Kozma SC, Thomas G (2010) Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab 11:390–401. doi:https://doi.org/10.1016/j.cmet.2010.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Coyle C, Cafferty FH, Vale C, Langley RE (2016) Metformin as an adjuvant treatment for cancer: a systematic review and meta-analysis. Ann Oncol 27:2184–2195. doi:https://doi.org/10.1093/annonc/mdw410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Elgendy M, Cirò M, Hosseini A, Weiszmann J, Mazzarella L, Ferrari E, Cazzoli R, Curigliano G, DeCensi A, Bonanni B, Budillon A, Pelicci PG, Janssens V, Ogris M, Baccarini M, Lanfrancone L, Weckwerth W, Foiani M, Minucci S (2019) Combination of hypoglycemia and metformin impairs tumor metabolic plasticity and growth by modulating the PP2A-GSK3β-MCL-1 axis. Cancer Cell 35:798-815.e795. https://doi.org/10.1016/j.ccell.2019.03.007

    Article  CAS  PubMed  Google Scholar 

  25. Gürsel DB, Banu MA, Berry N, Marongiu R, Burkhardt JK, Kobylarz K, Kaplitt MG, Rafii S, Boockvar JA (2015) Tight regulation between cell survival and programmed cell death in GBM stem-like cells by EGFR/GSK3b/PP2A signaling. Journal of neuro-oncology 121:19–29. doi:https://doi.org/10.1007/s11060-014-1602-3

    Article  CAS  PubMed  Google Scholar 

  26. Martuscello RT, Vedam-Mai V, McCarthy DJ, Schmoll ME, Jundi MA, Louviere CD, Griffith BG, Skinner CL, Suslov O, Deleyrolle LP, Reynolds BA (2016) A supplemented high-fat low-carbohydrate diet for the treatment of glioblastoma. Clin Cancer Res 22:2482. https://doi.org/10.1158/1078-0432.CCR-15-0916

    Article  CAS  PubMed  Google Scholar 

  27. Seaton TB, Welle SL, Warenko MK, Campbell RG (1986) Thermic effect of medium-chain and long-chain triglycerides in man. Am J Clin Nutr 44:630–634. https://doi.org/10.1093/ajcn/44.5.630

    Article  CAS  PubMed  Google Scholar 

  28. Tzameret software on consumption of food and nutrients.2016

  29. Fogh SE, Andrews DW, Glass J, Curran W, Glass C, Champ C, Evans JJ, Hyslop T, Pequignot E, Downes B, Comber E, Maltenfort M, Dicker AP, Werner-Wasik M (2010) Hypofractionated stereotactic radiation therapy: an effective therapy for recurrent high-grade gliomas. J Clin Oncol 28:3048–3053. doi:https://doi.org/10.1200/jco.2009.25.6941

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zach L, Guez D, Last D, Daniels D, Grober Y, Nissim O, Hoffmann C, Nass D, Talianski A, Spiegelmann R, Tsarfaty G, Salomon S, Hadani M, Kanner A, Blumenthal DT, Bukstein F, Yalon M, Zauberman J, Roth J, Shoshan Y, Fridman E, Wygoda M, Limon D, Tzuk T, Cohen ZR, Mardor Y (2015) Delayed contrast extravasation MRI: a new paradigm in neuro-oncology. Neurooncology 17:457–465. doi:https://doi.org/10.1093/neuonc/nou230

    Article  CAS  Google Scholar 

  31. Wong ET, Hess KR, Gleason MJ, Jaeckle KA, Kyritsis AP, Prados MD, Levin VA, Yung WKA (1999) Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. J Clin Oncol 17:2572–2572. https://doi.org/10.1200/JCO.1999.17.8.2572

    Article  CAS  PubMed  Google Scholar 

  32. Kessel KA, Hesse J, Straube C, Zimmer C, Schmidt-Graf F, Schlegel J, Meyer B, Combs SE (2017) Modification and optimization of an established prognostic score after re-irradiation of recurrent glioma. PLoS ONE 12:e0180457. https://doi.org/10.1371/journal.pone.0180457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cohen CW, Fontaine KR, Arend RC, Alvarez RD, Leath Iii CA, Huh WK, Bevis KS, Kim KH, Straughn JM Jr, Gower BA (2018) A ketogenic diet reduces central obesity and serum insulin in women with ovarian or endometrial cancer. J Nutr 148:1253–1260. https://doi.org/10.1093/jn/nxy119

    Article  PubMed  Google Scholar 

  34. Klement RJ, Champ CE, Kämmerer U, Koebrunner PS, Krage K, Schäfer G, Weigel M, Sweeney RA (2020) Impact of a ketogenic diet intervention during radiotherapy on body composition: III-final results of the KETOCOMP study for breast cancer patients. Breast Cancer Res 22:94. doi:https://doi.org/10.1186/s13058-020-01331-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Klement RJ, Brehm N, Sweeney RA (2020) Ketogenic diets in medical oncology: a systematic review with focus on clinical outcomes. Med Oncol 37:14. doi:https://doi.org/10.1007/s12032-020-1337-2

    Article  CAS  PubMed  Google Scholar 

  36. Mukherjee P, Augur ZM, Li M, Hill C, Greenwood B, Domin MA, Kondakci G, Narain NR, Kiebish MA, Bronson RT, Arismendi-Morillo G, Chinopoulos C, Seyfried TN (2019) Therapeutic benefit of combining calorie-restricted ketogenic diet and glutamine targeting in late-stage experimental glioblastoma. Communications Biology 2:200. doi:https://doi.org/10.1038/s42003-019-0455-x

    Article  PubMed  PubMed Central  Google Scholar 

  37. Seyfried TN, Kiebish M, Mukherjee P, Marsh J (2008) Targeting energy metabolism in brain cancer with calorically restricted ketogenic diets. Epilepsia 49:114–116. doi:https://doi.org/10.1111/j.1528-1167.2008.01853.x

    Article  PubMed  Google Scholar 

  38. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20. https://doi.org/10.1016/j.cmet.2007.10.002

    Article  CAS  PubMed  Google Scholar 

  39. Wang X, Liu R, Qu X, Yu H, Chu H, Zhang Y, Zhu W, Wu X, Gao H, Tao B, Li W, Liang J, Li G, Yang W (2019) α-ketoglutarate-activated NF-κB signaling promotes compensatory glucose uptake and brain tumor development. Molecular cell 76:148-162.e147. https://doi.org/10.1016/j.molcel.2019.07.007

    Article  CAS  PubMed  Google Scholar 

  40. De Feyter HM, Behar KL, Rao JU, Madden-Hennessey K, Ip KL, Hyder F, Drewes LR, Geschwind JF, de Graaf RA, Rothman DL (2016) A ketogenic diet increases transport and oxidation of ketone bodies in RG2 and 9L gliomas without affecting tumor growth. Neuro Oncol 18:1079–1087. doi:https://doi.org/10.1093/neuonc/now088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sperry J, Condro MC, Guo L, Braas D, Vanderveer-Harris N, Kim KK, Pope WB, Divakaruni AS, Lai A, Christofk H (2020) Glioblastoma utilizes fatty acids and ketone bodies for growth allowing progression during ketogenic diet therapy. Iscience 23:101453

    Article  CAS  Google Scholar 

  42. Vara-Ciruelos D, Russell FM, Hardie DG (2019) The strange case of AMPK and cancer: Dr Jekyll or Mr Hyde? (†). Open Biol 9:190099. doi:https://doi.org/10.1098/rsob.190099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang S, Sheng H, Zhang X, Qi Q, Chan CB, Li L, Shan C, Ye K (2019) Cellular energy stress induces AMPK-mediated regulation of glioblastoma cell proliferation by PIKE-A phosphorylation. Cell Death Dis 10:222. doi:https://doi.org/10.1038/s41419-019-1452-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Faubert B, Solmonson A, DeBerardinis RJ (2020) Metabolic reprogramming and cancer progression. Science 368. doi:https://doi.org/10.1126/science.aaw5473

    Article  Google Scholar 

  45. Luengo A, Gui DY, Vander Heiden MG (2017) Targeting metabolism for cancer therapy. Cell Chem Biol 24:1161–1180. https://doi.org/10.1016/j.chembiol.2017.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhuang Y, Chan DK, Haugrud AB, Miskimins WK (2014) Mechanisms by which low glucose enhances the cytotoxicity of metformin to cancer cells both in vitro and in vivo. PLoS One 9:e108444. doi:https://doi.org/10.1371/journal.pone.0108444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Oleksyszyn J (2011) The complete control of glucose level utilizing the composition of ketogenic diet with the gluconeogenesis inhibitor, the anti-diabetic drug metformin, as a potential anti-cancer therapy. Medical hypotheses 77:171–173. doi:https://doi.org/10.1016/j.mehy.2011.04.001

    Article  CAS  PubMed  Google Scholar 

  48. Fulgencio JP, Kohl C, Girard J, Pégorier JP (2001) Effect of metformin on fatty acid and glucose metabolism in freshly isolated hepatocytes and on specific gene expression in cultured hepatocytes. Biochem Pharmacol 62:439–446. doi:https://doi.org/10.1016/s0006-2952(01)00679-7

    Article  CAS  PubMed  Google Scholar 

  49. Takahashi S, Iizumi T, Mashima K, Abe T, Suzuki N (2014) Roles and regulation of ketogenesis in cultured astroglia and neurons under hypoxia and hypoglycemia. ASN Neuro. https://doi.org/10.1177/1759091414550997

    Article  PubMed  PubMed Central  Google Scholar 

  50. Foretz M, Guigas B, Viollet B (2019) Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat Rev Endocrinol 15:569–589. https://doi.org/10.1038/s41574-019-0242-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the encouragement and assistance of Prof Raphael Catane and Prof Ohad Cohen in the design and opening of the trial.

Funding

The trial was supported by the EU FP7 Marie Curie program FP7-MC-CIG 303795 awarded to YRL, and the Rosetrees Trust (grant reference A680). The MCT oil was generously provided by Nutricia, Netherlands.

Author information

Authors and Affiliations

Authors

Contributions

Keren Porper, Leor Zach, Colin E. Champ, and Yaacov R Lawrence designed the study, wrote the manuscript, and analyzed the data. All authors implemented the research protocol, contributed to the interpretation of the data, read and approved the final manuscript.

Corresponding author

Correspondence to Yaacov R. Lawrence.

Ethics declarations

Conflict of interest

Yaacov Lawrence: Research funding: Karyopharm Therapeutics, Checkmate Pharmaceuticals, Bristol-Myers Squibb and pending from Merck Serono. Honoria/consultancy fees: Bristol-Myers Squibb, Clinigen Group and Roche Genetech. Stock ownership: Protean Biodiagnostics Inc. Colin E. Champ receives compensation for his dietary books, Leor Zach is an advisor of Trail-IN Pharma. Scientific advisory board for Atkins, and scientific advisory board for Biosense. The other authors declare that they have no competing interests.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. The trial was approved by the local Institutional Review Board (IRB) - SMC 0712 − 13, and registered on Clinicaltrials.gov NCT02149459.

Consent to participate

All patients signed an IRB approved informed consent form, in accordance with the principals of Good Clinical Practice (GCP).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porper, K., Shpatz, Y., Plotkin, L. et al. A Phase I clinical trial of dose-escalated metabolic therapy combined with concomitant radiation therapy in high-grade glioma. J Neurooncol 153, 487–496 (2021). https://doi.org/10.1007/s11060-021-03786-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-021-03786-8

Keywords

Navigation