Skip to main content
Log in

Mathematical Modeling and Numerical Simulation of Atherosclerotic Plaque Progression Based on Fluid-Structure Interaction

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this work we propose a mathematical and numerical model to describe the early stages of atherosclerotic plaque formation, which is based on the interaction of processes with different spatial and temporal scales. A fluid–structure interaction problem, used to describe the cardiovascular mechanics arising between blood and the artery wall, is coupled to a set of differential problems describing the evolution of solute concentrations. In order to manage the multiscale-in-space nature of the involved processes, we propose a suitable numerical strategy based on the splitting and sequential solution of the coupled problem. We present some preliminary numerical results and investigate the effects of geometry, model parameters and coupling strategy on plaque growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. According to the following definition of TAWSS, this average is intended with respect to the fast time variable t, i.e. along a heartbeat, see Sect. 2.4 for its definition

  2. To further simplify the notation, we omit symbol \(\,\,\widehat{}\,\,\) for the Lagrangian variables when they are arguments.

  3. Here we are using a local-in-time interval [0, T].

  4. Note that TAWSS depends also on space, i.e., \(TAWSS=TAWSS(\tau ,{\varvec{x}}).\)

References

  1. Arzani, A.: Coronary artery plaque growth: a two-way coupled shear stress-driven model. Int. J. Numer. Methods Biomed. Eng. 36, e3293 (2019)

    MathSciNet  Google Scholar 

  2. Avgerinos, N., Neofytou, P.: Mathematical modelling and simulation of atherosclerosis formation and progress: a review. Ann. Biomed. Eng. 47, 1764–1785 (2019)

    Article  Google Scholar 

  3. Brown, A., Teng, Z., Evans, P., Gillard, J., Samady, H., Bennett, M.: Role of biomechanical forces in the natural history of coronary atherosclerosis. Nat. Rev. Cardiol. 13, 210–220 (2016)

    Article  Google Scholar 

  4. Calvez, V., Houot, J., Meunier, N., Raoult, A., Rusnakova, G.: Mathematical and numerical modeling of early atherosclerotic lesions. ESAIM: Proc. 30, 1–14 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caro, C., Fitz-Gerald, J., Schroter, R.: Arterial wall shear and distribution of early atheroma in man. Nature 223, 1159–1160 (1969)

    Article  ADS  Google Scholar 

  6. Chalmers, A., Cohen, A., Bursill, C., Myerscough, M.: Bifurcation and dynamics in a mathematical model of early atherosclerosis: how acute inflammation drives lesion development. J. Math. Biol. 71, 1451–1480 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chappell, D., Varner, S., Nerem, R., Medford, R., Alexander, R.: Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium. Circ. Res. 82, 532–539 (1998)

    Article  Google Scholar 

  8. Chatzizisis, Y., Coşkun, A., Jonas, M., Edelman, E., Feldman, C., Stone, P.: Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J. Am. Coll. Cardiol. 49, 2379–2393 (2007)

    Article  Google Scholar 

  9. Chiu, J.-J., Usami, S., Chien, S.: Vascular endothelial responses to altered shear stress: pathologic implications for atherosclerosis. Ann. Med. 41, 19–28 (2008)

    Article  Google Scholar 

  10. Cicha, I., Goppelt-Struebe, M., Yilmaz, A., Daniel, W., Garlichs, C.: Endothelial dysfunction and monocyte recruitment in cells exposed to non-uniform shear stress. Clin. Hemorheol. Microcirc. 39, 113–119 (2008)

    Article  Google Scholar 

  11. Cilla, M., Peña, E., Martínez, M.: Mathematical modelling of atheroma plaque formation and development in coronary arteries. J. R. Soc. Interface R. Soc. 11, 20130866 (2014)

    Article  Google Scholar 

  12. Corti, A., Chiastra, C., Colombo, M., Garbey, M., Migliavacca, F., Casarin, S.: A fully coupled computational fluid dynamics-agent-based model of atherosclerotic plaque development: multiscale modeling framework and parameter sensitivity analysis. Comput. Biol. Med. 118, 103623 (2020)

    Article  Google Scholar 

  13. Crosetto, P., Deparis, S., Fourestey, G., Quarteroni, A.: Parallel algorithms for fluid-structure interaction problems in haemodynamics. SIAM J. Sci. Comput. 33, 1598–1622 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cunningham, K., Gotlieb, A.: The role of shear stress in the pathogenesis of atherosclerosis. Lab. Investig. J. Tech. Methods Pathol. 85, 9–23 (2005)

    Article  Google Scholar 

  15. Deparis, S., Forti, D., Grandperrin, G., Quarteroni, A.: Facsi: A block parallel preconditioner for fluid-structure interaction in hemodynamics. J. Comput. Phys. 327, 700–718 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Di. Tomaso, G., Diaz-Zuccarini, V., Pichardo-Almarza, C.: A multiscale model of atherosclerotic plaque formation at its early stage. IEEE Trans. Bio-med. Eng. 58, 3460–3463 (2011)

    Article  Google Scholar 

  17. Donea, J., Giuliani, S., Halleux, J.: An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Eng. 33, 689–723 (1982)

    Article  ADS  MATH  Google Scholar 

  18. Faxon, D., Fuster, V., Libby, P., Beckman, J., Hiatt, W., Thompson, R., Topper, J., Annex, B., Rundback, J., Fabunmi, R., Robertson, R., Loscalzo, J.: Atherosclerotic vascular disease conference: writing group III: pathophysiology. Circulation 109, 2617–2625 (2004)

    Article  Google Scholar 

  19. Fernández, M., Gerbeau, J., Grandmont, C.: A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Int. J. Numer. Methods Eng. 69(4), 794–821 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Figueroa, C., Baek, S., Taylor, C., Humphrey, J.: A computational framework for fluid-solid-growth modeling in cardiovascular simulations. Comput. Methods Appl. Mech. Eng. 198, 3583–3602 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. González Montero, J., Valls, N., Brito, R., Rodrigo, R.: Essential hypertension and oxidative stress: new insights. World J. Cardiol. 6, 353–366 (2014)

    Article  Google Scholar 

  22. Grundy, S.M., Stone, N.J., Bailey, A.L., Beam, C., Birtcher, K.K., Blumenthal, R.S., Braun, L.T., de Ferranti, S., Faiella-Tommasino, J., Forman, D.E., Goldberg, R., Heidenreich, P.A., Hlatky, M.A., Jones, D.W., Lloyd-Jones, D., Lopez-Pajares, N., Ndumele, C.E., Orringer, C.E., Peralta, C.A., Saseen, J.J., Smith, S.C., Sperling, L., Virani, S.S., Yeboah, J.: 2018 aha/acc/aacvpr/aapa/abc/acpm/ada/ags/apha/aspc/nla/pcna guideline on the management of blood cholesterol: Executive summary: A report of the american college of cardiology/american heart association task force on clinical practice guidelines. J. Am. Coll. Cardiol. 73(24), 3168–3209 (2019)

    Article  Google Scholar 

  23. Hao, W., Friedman, A.: The LDL–HDL profile determines the risk of atherosclerosis: a mathematical model. PLoS ONE 9, e90497 (2014)

    Article  ADS  Google Scholar 

  24. Herrmann, R., Malinauskas, R., Truskey, G.: Characterization of sites with elevated LDL permeability at intercostal, celiac, and iliac branches of the normal rabbit aorta. Arterioscler. Thromb. J. Vasc. Biol. Am. Heart Assoc. 14, 313–323 (1994)

    Google Scholar 

  25. Hirt, C., Amsden, A., Cook, J.: An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J. Comput. Phys. 14, 227–253 (1974)

    Article  ADS  MATH  Google Scholar 

  26. Hwang, J., Saha, A., Boo, Y.C., Sorescu, G., Mcnally, J., Holland, S., Dikalov, S., Giddens, D., Griendling, K., Harrison, D., Jo, H.: Oscillatory shear stress stimulates endothelial production of o 2- from p47phox-dependent NAD(P)H oxidases, leading to monocyte adhesion. J. Biol. Chem. 278, 47291–47298 (2003)

    Article  Google Scholar 

  27. Kiechl, S., Willeit, J.: The natural course of atherosclerosis: part I: incidence and progression. Arterioscler. Thromb. Vasc. Biol. 19, 1484–1490 (1999)

    Article  Google Scholar 

  28. Ku, D., Giddens, D., Zarins, C., Glagov, S.: Pulsatile flow and atherosclerosis in the human carotid bifurcation—positive correlation between plaque location and low and oscillating shear-stress. Arteriosclerosis (Dallas, Tex.) 5, 293–302 (1985)

    Google Scholar 

  29. Kwak, B., Bäck, M., Bochaton-Piallat, M.-L., Caligiuri, G., Daemen, M., Davies, P., Hoefer, I., Holvoet, P., Jo, H., Krams, R., Lehoux, S., Monaco, C., Steffens, S., Virmani, R., Weber, C., Wentzel, J., Evans, P.: Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur. Heart J. 35, 3013–3020 (2014)

    Article  Google Scholar 

  30. Libby, P.: Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 32, 2045–2051 (2012)

    Article  Google Scholar 

  31. Liu, B., Tang, D.: Computer simulations of atherosclerotic plaque growth in coronary arteries. Mol. Cell. Biomech. MCB 7, 193–202 (2010)

    Google Scholar 

  32. Nichols, W., O’Rourke, M., Vlachopoulos, C. (eds.): McDonald’s Blood Flow in Arteries. Hodder Arnold (2011)

  33. Nixon, A., Gunel, M., Sumpio, B.: The critical role of hemodynamics in the development of cerebral vascular disease: a review. J. Neurosurg. 112, 1240–1253 (2009)

    Article  Google Scholar 

  34. Nobile, F., Pozzoli, M., Vergara, C.: Time accurate partitioned algorithms for the solution of fluid-structure interaction problems in haemodynamics. Comput. Fluids 86, 470–482 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nobile, F., Pozzoli, M., Vergara, C.: Inexact accurate partitioned algorithms for fluid-structure interaction problems with finite elasticity in haemodynamics. J. Comput. Phys. 273, 598–617 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Nobile, F., Vergara, C.: An effective fluid-structure interaction formulation for vascular dynamics by generalized robin conditions. SIAM J. Sci. Comput. 30, 731–763 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Parton, A., Mcgilligan, V., O’Kane, M., Baldrick, F., Watterson, S.: Computational modelling of atherosclerosis. Brief. Bioinform. 17, 562–575 (2015)

    Article  Google Scholar 

  38. Pozzi, S., Vergara, C.: Mathematical and numerical models of atherosclerotic plaque progression in carotid arteries. In: Vermolen, F.J., Vuik, C. (eds.) Numerical Mathematics and Advanced Applications ENMATH 2019. Springer, Berlin (2021)

    Google Scholar 

  39. Ross, R.: Atherosclerosis-an inflammatory disease. Am. Heart J. 138, S419–S420 (1999)

    Article  Google Scholar 

  40. Silva, T., Jäger, W., Neuss-Radu, M., Sequeira, A.: Modeling of the early stage of atherosclerosis with emphasis on the regulation of the endothelial permeability. J. Theor. Biol. 496, 110229 (2020)

    Article  MathSciNet  Google Scholar 

  41. Swim, E., Seshaiyer, P.: A nonconforming finite element method for fluid-structure interaction problems. Comput. Methods Appl. Mech. Eng. 195(17–18), 2088–2099 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Tarbell, J.: Mass transport in arteries and the localization of atherosclerosis. Annu. Rev. Biomed. Eng. 5, 79–118 (2003)

    Article  Google Scholar 

  43. Thon, M., Hemmler, A., Glinzer, A., Mayr, M., Wildgruber, M., Zernecke-Madsen, A., Gee, M.: A multiphysics approach for modeling early atherosclerosis. Biomech. Model. Mechanobiol. 17, 617–644 (2017)

    Article  Google Scholar 

  44. Traub, O., Berk, B.: Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler. Thromb. Vasc. Biol. 18, 677–685 (1998)

    Article  Google Scholar 

  45. Yang, Y., Jager, M., Neuss-Radu, W., Richter, T.: Mathematical modeling and simulation of the evolution of plaques in blood vessels. J. Math. Biol. 72, 973–996 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zarins, C., Giddens, D., Bharadvaj, B., Sottiurai, V., Mabon, R., Glagov, S.: Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res. 53, 502–514 (1981)

    Article  Google Scholar 

  47. Zohdi, T., Holzapfel, G., Berger, S.: A phenomenological model for atherosclerotic plaque growth and rupture. J. Theor. Biol. 227, 437–443 (2004)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Vergara.

Ethics declarations

Conflict of interest

The authors declares that they have no competing interests.

Additional information

Communicated by F. Gazzola.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozzi, S., Redaelli, A., Vergara, C. et al. Mathematical Modeling and Numerical Simulation of Atherosclerotic Plaque Progression Based on Fluid-Structure Interaction. J. Math. Fluid Mech. 23, 74 (2021). https://doi.org/10.1007/s00021-021-00598-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-021-00598-8

Keywords

Mathematics Subject Classification

Navigation