Skip to main content
Log in

Mechanical properties of polyvinyl alcohol-basalt hybrid fiber engineered cementitious composites with impact of elevated temperatures

混杂聚乙烯醇-玄武岩纤维延性水泥基材料的高温后力学性能

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In the present study, the mechanical properties of polyvinyl alcohol (PVA)-basalt hybrid fiber reinforced engineered cementitious composites (ECC) after exposure to elevated temperatures were experimentally investigated. Five temperatures of 20, 50, 100, 200 and 400 °C were set to evaluate the residual compressive, tensile and flexural behaviors of hybrid and mono fiber ECC. It was shown that partial replacement of PVA fibers with basalt fibers endowed ECC with improved residual compressive toughness, compared to brittle failure of mono fiber ECC heated to 400 °C. The tension tests indicated that the presence of basalt fibers benefited the tensile strength up to 200 °C, and delayed the sharp reduction of strength to 400 °C. Under flexural load, the peak deflections corresponding to flexural strengths of hybrid fiber ECC were found to be less vulnerable ranging from 20 to 100 °C. Further, the scanning electron microscopy (SEM) results uncovered that the rupture of basalt fiber at moderate temperature and its pullout mechanism at high temperature was responsible for the mechanical evolution of hybrid fiber ECC. This work develops a better understanding of elevated temperature and basalt fiber impact on the residual mechanical properties and further provides guideline for tailoring ECC for improved fire resistance.

摘要

本文试验研究了混杂聚乙烯醇(PVA)-玄武岩纤维延性水泥基材料(ECC)暴露于高温后的力学性 能。测试了混杂和单掺纤维ECC 分别经历20, 50, 100, 200 和400 °C 温度后的残余抗压、抗拉和抗 弯力学行为。结果表明: 相较于单掺纤维ECC 在400 °C 的脆性破坏, 玄武岩纤维部分取代PVA 纤维 可使ECC 获得更高的抗压韧性; 在拉伸试验中, 玄武岩纤维有利于在20 ℃~200 °C 范围内提高抗拉 强度, 并将强度急剧下降推迟到400 °C; 在弯曲荷载下, 混杂纤维ECC 抗弯强度对应的峰值挠度在 20~100 °C 范围内变化较小。此外, 扫描电镜(SEM)结果显示, 玄武岩纤维在中温下的断裂和高温下的 拔出机制是混杂纤维ECC 力学性能演变的主要原因。本研究可帮助理解高温和玄武岩纤维对ECC 残 余力学性能的影响规律, 并进一步为调整ECC 获得改进的耐火性能提供指导。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LI V C. From micromechanics to structure engineering-the design of cementitious composites for civil engineering application [J]. JSCE Journal of Structure Mechanics and Earthquake Engineering, 1993, 10(2): 37–48. DOI: https://doi.org/10.2208/jscej.1993.471-1.

    Google Scholar 

  2. LEPECH M D, LI V C. Water permeability of engineered cementitious composites [J]. Cement and Concrete Composites, 2009, 31(10): 744–753. DOI: https://doi.org/10.1016/j.cemconcomp.2009.07.002.

    Article  Google Scholar 

  3. YANG E H, LI V C. Tailoring engineered cementitious composites for impact resistance [J]. Cement and Concrete Research, 2012, 42(8): 1066–1071. DOI: https://doi.org/10.1016/j.cemconres.2012.04.006.

    Article  Google Scholar 

  4. FISCHER G, LI V C. Effect of matrix ductility on deformation behavior of steel-reinforced ECC flexural members under reversed cyclic loading conditions [J]. ACI Structural Journal, 2002, 99(6): 781–790. DOI: https://doi.org/10.1002/tal.2002.

    Google Scholar 

  5. SAHMARAN M, LI V C. Durability properties of microcracked ECC containing high volumes fly ash [J]. Cement and Concrete Research, 2009, 39(11): 1033–1043. DOI: https://doi.org/10.1016/j.cemconres.2009.07.009.

    Article  Google Scholar 

  6. ZHANG Jun, GONG Cheng-xu, GUO Zi-li, ZHANG Minghua. Engineered cementitious composite with characteristic of low drying shrinkage [J]. Cement and Concrete Research, 2009, 39(4): 303–312. DOI: https://doi.org/10.1016/j.cemconres.2008.11.012.

    Article  Google Scholar 

  7. ZHANG Jun, GONG Cheng-xu, GUO Zi-li, JU Xian-chun. Mechanical performance of low shrinkage engineered cementitious composite in tension and compression [J]. Journal of Composite Materials, 2009, 43(22): 2571–2585. DOI: https://doi.org/10.1177/0021998309345303.

    Article  Google Scholar 

  8. WANG Zhen-bo, ZHANG Jun, WANG Jia-he, SHI Zheng-jie. Tensile performance of polyvinyl alcohol-steel hybrid fiber reinforced cementitious composite with impact of water to binder ratio [J]. Journal of Composite Materials, 2015, 49(18): 2169–2186. DOI: https://doi.org/10.1177/0021998314542450.

    Article  Google Scholar 

  9. WANG Zhen-bo, ZUO Jian-ping, ZHANG Xiao-yan, JIANG Guang-hui, FENG Lu-lu. Stress-strain behaviour of hybrid-fibre engineered cementitious composite in compression [J]. Advances in Cement Research, 2020, 32(2): 53–65. DOI: https://doi.org/10.1680/jadcr.18.00072.

    Article  Google Scholar 

  10. ZHANG Jun, WANG Zhen-bo, WANG Qing, GAO Yuan. Simulation and test of flexural performance of polyvinyl alcohol-steel hybrid fiber reinforced cementitious composite [J]. Journal of Composite Materials, 2016, 50(30): 4291–4305. DOI: https://doi.org/10.1177/0021998316636206.

    Article  Google Scholar 

  11. WANG Zhen-bo, LIU Chang, ZUO Jian-ping, ZHANG Zishan, HAN Yu-dong, MAN Shi-han. Monitoring and modeling the damage evolution in engineered cementitious composites subjected to sulfate attack through continuous ultrasonic measurements [J]. Construction and Building Materials, 2020, 262: 120799. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120799.

    Article  Google Scholar 

  12. HE Rui, CHEN Shuan-fa, SUN Wen-juan, GONG Rui. Deformation behavior of high performance fiber reinforced cementitious composite prepared with asphalt emulsion [J]. Journal of Central South University, 2014, 21(2): 811–816. DOI: https://doi.org/10.1007/s11771-014-2004-6.

    Article  Google Scholar 

  13. QIAN S, LEPECH M D, KIM Y Y, LI V C. Introduction of transition zone design for bridge deck link slabs using ductile concrete [J]. ACI Structural Journal, 2009, 106(1): 96–105. DOI: https://doi.org/10.1109/ICNSC.2009.4919362.

    Google Scholar 

  14. MAALEJ M, QUEK S T, ZHANG J. Behavior of hybrid-fiber engineered cementitious composites subjected to dynamic tensile loading and projectile impact [J]. ASCE Journal of Materials in Civil Engineering, 2005, 17(2): 143–152. DOI: https://doi.org/10.1061/(ASCE)0899-1561(2005)17:2(143).

    Article  Google Scholar 

  15. ZHANG Jun, WANG Zhen-bo, JU Xian-chun. Application of ductile fiber reinforced cementitious composite in jointless concrete pavements [J]. Composites Part B: Engineering, 2013, 50: 224–231. DOI: https://doi.org/10.1016/j.compositesb.2013.02.007.

    Article  Google Scholar 

  16. WANG Zhen-bo, SUN Peng, ZUO Jian-ping, LIU Chang, HAN Yu-dong, ZHANG Zi-shan. Long-term properties and microstructure change of engineered cementitious composites subjected to high sulfate coal mine water in drying-wetting cycles [J]. Materials & Design, 2021, 203: 109610. DOI: https://doi.org/10.1016/j.matdes.2021.109610.

    Article  Google Scholar 

  17. FAN Jian-sheng, SHI Zheng-jie, GOU Shuang-ke, NIE Xin, ZHANG Jun, WANG Zhen-bo. Experimental research on negative bending behavior of steel-ECC composite beams [J]. China Civil Engineering Journal, 2017, 50(4): 64–72. DOI: https://doi.org/10.15951/j.tmgcxb.2017.04.008. (in Chinese)

    Google Scholar 

  18. SIVA C R, PANKAJ A. Flexural behavior of reinforced concrete beams with high performance fiber reinforced cementitious composites [J]. Journal of Central South University, 2019, 26: 2609–2622. DOI: https://doi.org/10.1007/s11771-019-4198-0.

    Article  Google Scholar 

  19. SAHMARAN M, LACHEMI M, LI V C. Assessing mechanical properties and microstructure of fire-damaged engineered cementitious composites [J]. ACI Materials Journal, 2010, 107(3): 279–304. DOI: https://doi.org/10.1002/tal.614.

    Google Scholar 

  20. SAHMARAN M, ÖZBAY E, YÜCEL H E, LACHEMI M, LI V C. Effect of fly ash and PVA fiber on microstructural damage and residual properties of engineered cementitious composites exposed to high temperatures [J]. ASCE Journal of Materials in Civil Engineering, 2011, 23(12): 1735–1745. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000335.

    Article  Google Scholar 

  21. YU J T, LIN J H, ZHANG Z G, LI V C. Mechanical performance of ECC with high-volume fly ash after subelevated temperatures [J]. Construction and Building Materials, 2015, 99: 82–89. DOI: https://doi.org/10.1016/j.conbuildmat.2015.09.002.

    Article  Google Scholar 

  22. YU K Q, LU Z D, YU J T. Residual compressive properties of strain-hardening cementitious composite with different curing ages exposed to high temperature [J]. Construction and Building Materials, 2015, 98: 146–155. DOI: https://doi.org/10.1016/j.conbuildmat.2015.08.041.

    Article  Google Scholar 

  23. MECHTCHERINE V, ANDRADE S F, MÜLLER S, JUN P, FILHO R D T. Coupled strain rate and temperature effects on the tensile behavior of strain-hardening cement-based composites (SHCC) with PVA fibers [J]. Cement and Concrete Research, 2012, 42(11): 1417–1427. DOI: https://doi.org/10.1016/j.cemconres.2012.08.011.

    Article  Google Scholar 

  24. BHAT P S, CHANG V, LI M. Effect of elevated temperature on strain-hardening engineered cementitious composites [J]. Construction and Building Materials, 2014, 69: 370–380. DOI: https://doi.org/10.1016/j.conbuildmat.2014.07.052.

    Article  Google Scholar 

  25. MAALEJ M, QUEK S, ZHANG J. Behavior of hybrid-fiber engineered cementitious composites subjected to dynamic tensile loading and projectile impact [J]. ASCE Journal of Materials in Civil Engineering, 2005, 17: 143–152. DOI: https://doi.org/10.1061/(ASCE)0899-1561(2005)17:2(143).

    Article  Google Scholar 

  26. PARK S H, KIM J D, RYU G S, KOH K T. Tensile behavior of ultra high performance hybrid fiber reinforced concrete [J]. Cement and Concrete Composites, 2012, 34: 172–184. DOI: https://doi.org/10.1016/j.cemconcomp.2011.09.009.

    Article  Google Scholar 

  27. BANTHIA N, MAJDZADEH F, WU J, BINDIGANAVILE V. Fiber synergy in hybrid fiber reinforced concrete (HyFRC) in flexure and direct shear [J]. Cement and Concrete Composites, 2014, 48: 91–97. DOI: https://doi.org/10.1016/j.cemconcomp.2013.10.018.

    Article  Google Scholar 

  28. MAALEJ M, QUEK S T, AHMED S F U, ZHANG J, LIN V W J, LEONG K S. Review of potential structural applications of hybrid fiber engineered cementitious composites [J]. Construction and Building Materials, 2012, 36: 216–227. DOI: https://doi.org/10.1016/j.conbuildmat.2012.04.010.

    Article  Google Scholar 

  29. PAKRAVAN H R, JAMSHIDI M. Tensile properties of strainhardening cementitious composites containing polyvinylalcohol fibers hybridized with polypropylene fibers [J]. Journal of Central South University, 2018, 25(1): 51–59. DOI: https://doi.org/10.1007/s11771-018-3716-9.

    Article  Google Scholar 

  30. LIU J C, TAN K H. Fire resistance of strain hardening cementitious composite with hybrid PVA and steel fibers [J]. Construction and Building Materials, 2017, 135: 600–611. DOI: https://doi.org/10.1016/j.conbuildmat.2016.12.204.

    Article  Google Scholar 

  31. LIU J C, TAN K H, ZHANG D. Multi-response optimization of post-fire performance of strain hardening cementitious composite [J]. Cement and Concrete Composites, 2017, 80: 80–90. DOI: https://doi.org/10.1016/j.cemconcomp.2017.03.001.

    Article  Google Scholar 

  32. POURFALAH S. Behaviour of engineered cementitious composites and hybrid engineered cementitious composites at high temperatures [J]. Construction and Building Materials, 2018, 158: 921–937. DOI: https://doi.org/10.1016/j.conbuildmat.2017.10.077.

    Article  Google Scholar 

  33. ZHANG D, YU J, WU H L, JAWORSKA B, ELLIS B R, LI V C. Discontinuous micro-fibers as intrinsic reinforcement for ductile engineered cementitious composites (ECC) [J]. Composites Part B: Engineering, 2020, 184: 107741. DOI: https://doi.org/10.1016/j.compositesb.2020.107741.

    Article  Google Scholar 

  34. PROMODA B, VIJAY B, JIRI M, PETR L. Elevated temperature properties of basalt microfibril filled geopolymer composites [J]. Construction and Building Materials, 2018, 163: 850–860. DOI: https://doi.org/10.1016/j.conbuildmat.2017.12.152.

    Article  Google Scholar 

  35. FIORE V, SCALICI T, DI BELLA G. A review on basalt fibre and its composites [J]. Composites Part B: Engineering, 2015, 74: 74–94. DOI: https://doi.org/10.1016/j.compositesb.2014.12.034.

    Article  Google Scholar 

  36. DHAND V, MITTAL G, RHEE K Y, PARK S J, HUI D. A short review on basalt fiber reinforced polymer composites [J]. Composites Part B: Engineering, 2015, 73: 166–180. DOI: https://doi.org/10.1016/j.compositesb.2014.12.011.

    Article  Google Scholar 

  37. WANG Q S, YI Y, MA G W, LUO H. Hybrid effects of steel fibers, basalt fibers and calcium sulfate on mechanical performance of PVA-ECC containing high-volume fly ash [J]. Cement and Concrete Composites, 2019, 97: 357–368. DOI: https://doi.org/10.1016/j.cemconcomp.2019.01.009.

    Article  Google Scholar 

  38. LOH Z P, MO K H, TAN C G, YEO S H. Mechanical characteristics and flexural behaviour of fibre-reinforced cementitious composite containing PVA and basalt fibres [J]. Sadhana, 2019, 44(4): 98–106. DOI: https://doi.org/10.1007/s12046-019-1072-6.

    Article  Google Scholar 

  39. ZHAO Hai-tao, JIANG Kai-di, YANG Rui, TANG Yi-min, LIU Jia-ping. Experimental and theoretical analysis on coupled effect of hydration, temperature and humidity in early-age cement-based materials [J]. International Journal of Heat and Mass Transfer, 2020, 146: 118784. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.118784.

    Article  Google Scholar 

  40. WANG Qing, ZHANG Jun, HO J C M. Zeolite to improve strength-shrinkage performance of high-strength engineered cementitious composite [J]. Construction and Building Materials, 2020, 234: 117335. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117335.

    Article  Google Scholar 

  41. WANG Zhen-bo, ZHANG Jun. Field applications of low shrinkage engineered cementitious composites in China [J]. Indian Concrete Journal, 2020, 2: 69–74. https://www.icjonline.com/editionabstract_detail/022020.

    Google Scholar 

  42. ROKUGO K, KANDA T, YOKOTA H, SAKATA N. Applications and recommendations of high performance fiber reinforced cement composites with multiple fine cracking (HPFRCC) in Japan [J]. Materials & Structures, 2009, 42(9): 1197–1208. DOI: https://doi.org/10.1617/s11527-009-9541-8.

    Article  Google Scholar 

  43. LUO Jian-jun, CAI Zi-wei, YU Ke-quan, ZHU Wen-jun, LU Zhou-dao. Temperature impact on the micro-structures and mechanical properties of high-strength engineered cementitious composites [J]. Construction and Building Materials, 2019, 226: 686–698. DOI: https://doi.org/10.1016/j.conbuildmat.2019.07.322.

    Article  Google Scholar 

  44. WU C, LI V C. Thermal-mechanical behaviors of CFRP-ECC hybrid under elevated temperatures [J]. Composites Part B: Engineering, 2017, 110: 255–266. DOI: https://doi.org/10.1016/j.compositesb.2016.11.037.

    Article  Google Scholar 

  45. CHOI J, LEE B Y. Bonding properties of basalt fiber and strength reduction according to fiber orientation [J]. Materials, 2015, 8: 6719–6727. DOI: https://doi.org/10.3390/ma8105335.

    Article  Google Scholar 

  46. LEUNG C K Y. Design criteria for pseudo-ductile fiberreinforced composites [J]. ASCE Journal of Engineering Mechanics, 1996, 122(1): 10–18. DOI: https://doi.org/10.1061/(ASCE)0733-9399(1996)122:1(10).

    Article  Google Scholar 

  47. WILLE K, EL-TAWIL S, NAAMAN A E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading [J]. Cement and Concrete Composites, 2014, 43: 58–66. DOI: https://doi.org/10.1016/j.cemconcomp.2013.12.015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-bo Wang  (王振波).

Additional information

Foundation item

Project(51808545) supported by the National Natural Science Foundation of China; Project(8184083) supported by the Beijing Natural Science Foundation, China; Project(2021YQLJ05) supported by the Fundamental Research Funds for the Central Universities, China

Contributors

The overarching research goals were developed by WANG Zhen-bo, HAN Shuo, and WANG Qing. SUN Peng, LIU Wei-kang and HAN Shuo performed the experiments and provided the measured data. WANG Zhen-bo and HAN Shuo analyzed the measured data. The initial draft of the manuscript was written by WANG Zhen-bo. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

WANG Zhen-bo, HAN Shuo, SUN Peng, LIU Wei-kang, and WANG Qing declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Zb., Han, S., Sun, P. et al. Mechanical properties of polyvinyl alcohol-basalt hybrid fiber engineered cementitious composites with impact of elevated temperatures. J. Cent. South Univ. 28, 1459–1475 (2021). https://doi.org/10.1007/s11771-021-4710-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4710-1

Key words

关键词

Navigation