Skip to main content
Log in

ZIF-67 derived CoSx/NC catalysts for selective reduction of nitro compounds

]ZIF-67 衍生的 CoSx/NC 催化剂的制备及其对硝基化合物的选择性还原

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Transition metal sulfides (TMSs)-based materials have been extensively investigated as effective non-noble catalysts for various applications. However, the exploration of TMSs-based catalysts for hydrogenation of nitro compounds is limited. Herein, CoSx/NC catalysts were prepared by solvothermal sulfurization of ZIF-67, followed by high-temperature annealing (300–600 °C) under NH3 atmosphere. It was found that the structures and compositions of the as-prepared CoSx/NC can be readily tuned by varying the annealing temperature. Particularly, CoSx/NC-500, which possesses higher degree of S defects and larger specific surface areas, can achieve high conversion, selectivity and stability for catalytic reduction of nitro compounds into amines under mild reaction conditions.

摘要

过渡金属硫化物作为高效的非贵金属催化剂, 已在化工领域得到了广泛的应用。但是, 很少将其应用于硝基化合物的催化加氢反应中。在本文中, 通过硫化金属有机框架材料 ZIF-67, 并在氨气气氛下进行退火, 制备得到了 CoSx/NC 催化剂。研究发现, 该类催化剂的结构和组成可通过改变退火温度进行调控。特别是, 当退火温度为 500 °C 时, 得到的催化剂 CoSx/NC-500 由于具有高的硫缺陷和比表面积, 可在温和反应条件下高选择性地将硝基化合物还原成相应的氨基化合物。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HUANG Yun-jing, YANG Wei-jun, QIN Ming-gao, ZHAO Hao-liang. Mild and highly efficient transfer hydrogenation of aldehyde and ketone catalyzed by rubidium phosphate [J]. Journal of Central South University, 2016, 23(7): 1603–1610. DOI: https://doi.org/10.1007/s11771-016-3214-x.

    Article  Google Scholar 

  2. BLASER H U. A golden boost to an old reaction [J]. Science, 2006, 313(5785): 312. DOI: https://doi.org/10.1126/science.1131574.

    Article  Google Scholar 

  3. SAHOO B, FORMENTI D, TOPF C, BACHMANN S, SCALONE M, JUNGE K, BELLER M. Biomass-derived catalysts for selective hydrogenation of nitroarenes [J]. Chem Sus Chem, 2017, 10(15): 3035–3039. DOI: https://doi.org/10.1002/cssc.201700796.

    Article  Google Scholar 

  4. SHENG Yao, WANG Xue-guang, XING Zhi-kang, CHEN Xiu-bin, ZOU Xiu-jing, LU Xiong-gang. Highly active and chemoselective reduction of halogenated nitroarenes catalyzed by ordered mesoporous carbon supported platinum nanoparticles [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8908–8916. DOI: https://doi.org/10.1021/acssuschemeng.9b00948.

    Article  Google Scholar 

  5. CAI Shuang-fei, DUAN Hao-hong, RONG Hong-pan, WANG Ding-sheng, LI Lin-sen, HE Wei, LI Ya-dong. Highly active and selective catalysis of bimetallic Rh3Ni1 nanoparticles in the hydrogenation of nitroarenes [J]. ACS Catalysis, 2013, 3(4): 608–612. DOI: https://doi.org/10.1021/cs300689w.

    Article  Google Scholar 

  6. ZHANG Jian, WANG Liang, SHAO Yi, WANG Yan-qin, GATES B C, XIAO Feng-shou. A Pd@Zeolite catalyst for nitroarene hydrogenation with high product selectivity by sterically controlled adsorption in the zeolite micropores [J]. Angewandte Chemie International Edition, 2017, 56(33): 9747–9751. DOI: https://doi.org/10.1002/anie.201703938.

    Article  Google Scholar 

  7. FORMENTI D, FERRETTI F, SCHARNAGL F K, BELLER M. Reduction of nitro compounds using 3d-non-noble metal catalysts [J]. Chemical Reviews, 2019, 119(4): 2611–2680. DOI: https://doi.org/10.1021/acs.chemrev.8b00547.

    Article  Google Scholar 

  8. YUN Rui-rui, HONG Li-rui, MA Wan-jiao, JIA Wei-guo, LIU Shou-jie, ZHENG Bai-shu. Fe/Fe2O3@N-dopped porous carbon: A high-performance catalyst for selective hydrogenation of nitro compounds [J]. ChemCatChem, 2019, 11(2): 724–728. DOI: https://doi.org/10.1002/cctc.201801626.

    Article  Google Scholar 

  9. MADASU M, HSIA C F, REJ S, HUANG M H. Cu2O pseudomorphic conversion to Cu crystals for diverse nitroarene reduction [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 11071–11077. DOI: https://doi.org/10.1021/acssuschemeng.8b02537.

    Article  Google Scholar 

  10. WEI Zhong-zhe, WANG Jing, MAO Shan-jun, SU Die-feng, JIN Hai-yan, WANG Yi-he, XU Fan, LI Hao-ran, WANG Yong. In situ-generated Co0-Co3O4/N-doped carbon nanotubes hybrids as efficient and chemoselective catalysts for hydrogenation of nitroarenes [J]. ACS Catalysis, 2015, 5(8): 4783–4789. DOI: https://doi.org/10.1021/acscatal.5b00737.

    Article  Google Scholar 

  11. GUO Yan-na, PARK T, YI J W, HENZIE J, KIM J H, WANG Zhong-li, JIANG Bo, BANDO Y, SUGAHARA Y, TANG J, YAMAUCHI Y. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting [J]. Advanced Materials, 2019, 31(17): 1807134. DOI: https://doi.org/10.1002/adma.201807134.

    Article  Google Scholar 

  12. DUAN Yan-an, DONG Xiao-su, SONG Tao, WANG Zhao-zhan, XIAO Jian-liang, YUAN You-zhu, YANG Yong. Hydrogenation of functionalized nitroarenes catalyzed by single-phase pyrite FeS2 nanoparticles on N,S-codoped porous carbon [J]. Chem Sus Chem, 2019, 12(20): 4636–4644. DOI: https://doi.org/10.1002/cssc.201901867.

    Article  Google Scholar 

  13. SORRIBES I, LIU Li-chen, CORMA A. Nanolayered Co-Mo-S catalysts for the chemoselective hydrogenation of nitroarenes [J]. ACS Catalysis, 2017, 7(4): 2698–2708. DOI: https://doi.org/10.1021/acscatal.7b00170.

    Article  Google Scholar 

  14. ZHANG Guang-ji, TANG Fei-ying, WANG Xiao-ying, AN Ping, WANG Li-qiang, LIU You-nian. Co,N-codoped porous carbon-supported CoyZnS with superior activity for nitroarene hydrogenation [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(15): 6118–6126. DOI: https://doi.org/10.1021/acssuschemeng.0c01300.

    Article  Google Scholar 

  15. WANG Chao-hai, KANETI Y V, BANDO Y, LIN Jian-jian, LIU Chao, LI Jian-sheng, YAMAUCHI Y. Metal-organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion [J]. Materials Horizons, 2018, 5(3): 394–407. DOI: https://doi.org/10.1039/C8MH00133B.

    Article  Google Scholar 

  16. PAN Yuan, SUN Kai-an, LIU Shou-jie, CAO Xing, WU Kong-lin, CHEONG Weng-chon, CHEN Zheng, WANG Yu, LI Yang, LIU Yun-qi, WANG Ding-sheng, PENG Qing, CHEN Chen, LI Ya-dong. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting [J]. Journal of the American Chemical Society, 2018, 140(7): 2610–2618. DOI: https://doi.org/10.1021/jacs.7b12420.

    Article  Google Scholar 

  17. MURUGESAN K, SENTHAMARAI T, SOHAIL M, ALSHAMMARI A S, POHL M M, BELLER M, JAGADEESH R V. Cobalt-based nanoparticles prepared from MOF-carbon templates as efficient hydrogenation catalysts [J]. Chemical Science, 2018, 9(45): 8553–8560. DOI: https://doi.org/10.1039/C8SC02807A.

    Article  Google Scholar 

  18. TOYAO T, FUJIWAKI M, MIYAHARA K, KIM T H, HORIUCHI Y, MATSUOKA M. Design of zeolitic imidazolate framework derived nitrogen-doped nanoporous carbons containing metal species for carbon dioxide fixation reactions [J]. Chem Sus Chem, 2015, 8(22): 3905–3912. DOI: https://doi.org/10.1002/cssc.201500780.

    Article  Google Scholar 

  19. JAGADEESH R V, MURUGESAN K, ALSHAMMARI A S, NEUMANN H, POHL M M, RADNIK J, BELLER M. MOF-derived cobalt nanoparticles catalyze a general synthesis of amines [J]. Science, 2017, 358(6361): 326–332. DOI: https://doi.org/10.1126/science.aan6245.

    Article  Google Scholar 

  20. WANG Xi, LI Ying-wei. Chemoselective hydrogenation of functionalized nitroarenes using MOF-derived Co-based catalysts [J]. Journal of Molecular Catalysis A: Chemical, 2016, 420: 56–65. DOI: https://doi.org/10.1016/j.molcata.2016.04.008.

    Article  Google Scholar 

  21. YANG Shu-liang, PENG Li, BULUT S, QUEEN W L. Recent advances of MOFs and MOF-derived materials in thermally driven organic transformations [J]. Chemistry-A European Journal, 2019, 25(9): 2161–2178. DOI: https://doi.org/10.1002/chem.201803157.

    Article  Google Scholar 

  22. BAVYKINA A, KOLOBOV N, KHAN I S, BAU JEREMY A, RAMIREZ A, GASCON J. Metal-organic frameworks in heterogeneous catalysis: Recent progress, new trends, and future perspectives [J]. Chemical Reviews, 2020, 120(16): 8468–8535. DOI: https://doi.org/10.1021/acs.chemrev.9b00685.

    Article  Google Scholar 

  23. KONNERTH H, MATSAGAR B M, CHEN S, PRECHTL MARTIN H G, SHIEH F K, WU KEVIN C W. Metal-organic framework (MOF)-derived catalysts for fine chemical production [J]. Coordination Chemistry Reviews, 2020, 416: 213319. DOI: https://doi.org/10.1016/j.ccr.2020.213319.

    Article  Google Scholar 

  24. SHENG Jian-ping, WANG Li-qiang, DENG Liu, ZHANG Min, HE Hai-chuan, ZENG Ke, TANG Fei-ying, LIU You-nian. MOF-templated fabrication of hollow Co4N@N-doped carbon porous nanocages with superior catalytic activity [J]. ACS Applied Materials & Interfaces, 2018, 10(8): 7191–7200. DOI: https://doi.org/10.1021/acsami.8b00573.

    Article  Google Scholar 

  25. TANG Fei-ying, WANG Li-qiang, ZHANG Guang-ji, ZHANG Min, LIU You-nian. Creating coordination mismatch in MOFs: Tuning from pore structure of the derived supported catalysts to their catalytic performance [J]. Industrial & Engineering Chemistry Research, 2019, 58(14): 5543–5551. DOI: https://doi.org/10.1021/acs.iecr.9b01096.

    Article  Google Scholar 

  26. PARLETT C M A, WILSON K, LEE A F. Hierarchical porous materials: Catalytic applications [J]. Chemical Society Reviews, 2013, 42(9): 3876–3893. DOI: https://doi.org/10.1039/C2CS35378D.

    Article  Google Scholar 

  27. LEDOUX M J, DJELLOULI B. Hydrodenitrogenation activity and selectivity of well-dispersed transition metal sulfides of the second row on activated carbon [J]. Journal of Catalysis, 1989, 115(2): 580–590. DOI: https://doi.org/10.1016/0021-9517(89)90059-6.

    Article  Google Scholar 

  28. YANG Tao, YIN Li-si, HE Mao-shuai, WEI Wen-xian, CAO Guo-jian, DING Xin-ran, WANG Yi-hui, ZHAO Zi-ming, YU Ting-ting, ZHAO Hong, ZHANG Dong-en. Yolk-shell hierarchical catalyst with tremella-like molybdenum sulfide on transition metal (Co, Ni and Fe) sulfide for electrochemical water splitting [J]. Chemical Communications, 2019, 55(95): 14343–14346. DOI: https://doi.org/10.1039/C9CC06244K.

    Article  Google Scholar 

  29. WENG Bai-cheng, WANG Xiao-ming, GRICE C R, XU Feng-hua, YAN Yan-fa. A new metal-organic open framework enabling facile synthesis of carbon encapsulated transition metal phosphide/sulfide nanoparticle electrocatalysts [J]. Journal of Materials Chemistry A, 2019, 7(12): 7168–7178. DOI: https://doi.org/10.1039/C9TA00404A.

    Article  Google Scholar 

  30. XU Hua-jie, CAO Jing, SHAN Chang-fu, WANG Bing-kai, XI Pin-xian, LIU Wei-sheng, TANG Yu. MOF-derived hollow CoS decorated with CeOx nanoparticles for boosting oxygen evolution reaction electrocatalysis [J]. Angewandte Chemie International Edition, 2018, 57(28): 8654–8658. DOI: https://doi.org/10.1002/anie.201804673.

    Article  Google Scholar 

  31. LI Hui, YUE Fan, XIE Hong-tao, YANG Chao, ZHANG Yi, ZHANG Liu-gen, WANG Ji-de. Hollow shell-in-shell Ni3S4@Co9S8 tubes derived from core-shell Ni-MOF-74@Co-MOF-74 as efficient faradaic electrodes [J]. Crystengcomm, 2018, 20(7): 889–895. DOI: https://doi.org/10.1039/C7CE01873H.

    Article  Google Scholar 

  32. YANG Shu-liang, PENG Li, SUN D T, OVEISI E, BULUT S, QUEEN W L. Metal-organic-framework-derived Co3S4 hollow nanoboxes for the selective reduction of nitroarenes [J]. ChemSusChem, 2018, 11(18): 3131–3138. DOI: https://doi.org/10.1002/cssc.201801641.

    Article  Google Scholar 

  33. XU Yong, LV Xiao-jun, CHEN Yong, FU Wen-fu. Highly selective reduction of nitroarenes to anilines catalyzed using MOF-derived hollow Co3S4 in water under ambient conditions [J]. Catalysis Communications, 2017, 101: 31–35. DOI: https://doi.org/10.1016/j.catcom.2017.07.001.

    Article  Google Scholar 

  34. WU Lan-lan, WANG Qi-shun, LI Jian, LONG Yan, LIU Yu, SONG Shu-yan, ZHANG Hong-jie. Co9S8 nanoparticles-embedded N/S-codoped carbon nanofibers derived from metal-organic framework-wrapped CdS nanowires for efficient oxygen evolution reaction [J]. Small, 2018, 14(20): 1704035. DOI: https://doi.org/10.1002/smll.201704035.

    Article  Google Scholar 

  35. DOU Shuo, TAO Li, HUO Jia, WANG Shuang-yin, DAI Li-ming. Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis [J]. Energy & Environmental Science, 2016, 9(4): 1320–1326. DOI: https://doi.org/10.1039/C6EE00054A.

    Article  Google Scholar 

  36. ARECHEDERRA R L, ARTYUSHKOVA K, ATANASSOV P, MINTEER S D. Growth of phthalocyanine doped and undoped nanotubes using mild synthesis conditions for development of novel oxygen reduction catalysts [J]. ACS Applied Materials & Interfaces, 2010, 2(11): 3295–3302. DOI: https://doi.org/10.1021/am100724v.

    Article  Google Scholar 

  37. XIAO Jun-wu, CHEN Chen, XI Jiang-bo, XU Yang-yang, XIAO Fei, WANG Shuai, YANG Shi-he. Core-shell Co@Co3O4 nanoparticle-embedded bamboo-like nitrogen-doped carbon nanotubes (BNCNTs) as a highly active electrocatalyst for the oxygen reduction reaction [J]. Nanoscale, 2015, 7(16): 7056–7064. DOI: https://doi.org/10.1039/C4NR05917D.

    Google Scholar 

  38. CASANOVAS J, RICART J M, RUBIO J, ILLAS F, JIMÉNEZ J M. Origin of the large N 1s binding energy in X-ray photoelectron spectra of calcined carbonaceous materials [J]. Journal of the American Chemical Society, 1996, 118(34): 8071–8076. DOI: https://doi.org/10.1021/ja960338m.

    Article  Google Scholar 

  39. WANG Xiao-xia, CULLEN D A, PAN Yung-tin, HWANG S, WANG Mao-yu, FENG Zhen-xing, WANG Jing-yun, ENGELHARD M H, ZHANG Han-guang, HE Yang-hua, SHAO Yu-yan, SU Dong, MORE K L, SPENDELOW J S, WU Gang. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells [J]. Advanced Materials, 2018, 30(11): 1706758. DOI: https://doi.org/10.1002/adma.201706758.

    Article  Google Scholar 

  40. WESTERHAUS F A, JAGADEESH R V, WIENHÖFER G, POHL M M, RADNIK J, SURKUS A E, RABEAH J, JUNGE K, JUNGE H, NIELSEN M, BRÜCKNER A, BELLER M. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes [J]. Nature Chemistry, 2013, 5: 537. DOI: https://doi.org/10.1038/nchem.1645.

    Article  Google Scholar 

  41. ZHENG Bo, WANG Jiong, WANG Feng-bin, XIA Xing-hua. Low-loading cobalt coupled with nitrogen-doped porous graphene as excellent electrocatalyst for oxygen reduction reaction [J]. Journal of Materials Chemistry A, 2014, 2(24): 9079–9084. DOI: https://doi.org/10.1039/C4TA01043D.

    Article  Google Scholar 

  42. MOROZAN A, JÉGOU P, JOUSSELME B, PALACIN S. Electrochemical performance of annealed cobalt-benzotriazole/CNTs catalysts towards the oxygen reduction reaction [J]. Physical Chemistry Chemical Physics, 2011, 13(48): 21600–21607. DOI: https://doi.org/10.1039/C1CP23199E.

    Article  Google Scholar 

  43. HADJ-AÏSSA A, DASSENOY F, GEANTET C, AFANASIEV P. Solution synthesis of core-shell Co9S8@MoS2 catalysts [J]. Catalysis Science & Technology, 2016, 6(13): 4901–4909. DOI: https://doi.org/10.1039/C6CY00311G.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-jie Yang  (杨文杰) or You-nian Liu  (刘又年).

Additional information

Foundation item

Projects(21636010, 21878342) supported by the National Natural Science Foundation of China; Project(2019JJ50758) supported by the Hunan Provincial Natural Science Foundation of China; Project(2019TP1001) supported by the Hunan Provincial Science and Technology Plan Project of China; Project(CX20190097) supported by the Fundamental Research Funds for the Central Universities, China

Contributors

ZHANG Guang-ji performed the experiments and wrote the first draft of the manuscript. ZHANG Guang-ji, TANG Fei-ying and WANG Li-qiang analyzed the measured data. YANG Wen-jie edited the draft of manuscript. LIU You-nian conceptualized and designed the study, coordinated and supervised data collection and analysis. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

There are no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Gj., Tang, Fy., Wang, Lq. et al. ZIF-67 derived CoSx/NC catalysts for selective reduction of nitro compounds. J. Cent. South Univ. 28, 1279–1290 (2021). https://doi.org/10.1007/s11771-021-4696-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4696-8

Key words

关键词

Navigation