Skip to main content
Log in

Shear wave velocity in granular soil considering effects of inherent and stress-induced anisotropy

内在的和应力诱导产生的各向异性对颗粒土剪切波速的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The aim of this research was to explain the effects of relative density, mean effective stress, grading characteristics, consolidation stress ratio and initial fabric anisotropy produced during specimen preparation on shear wave velocity (Vs). It is shown that the Vs of the consolidated specimens under anisotropic compression stress is greater than that of the consolidated specimens under isotropic or anisotropic extension stress states at a given relative density and effective confining stress. It is also shown that the depositional technique that was used to create reconstituted specimens has important effect on the Vs. A parallel comparison of measured values from the resonant column and bender element tests is also presented. These results of the tests have been employed to develop a generalized relationship for predicting Vs of granular soils. The Vs model is validated using data collected from literatures. Based on the results, it can be conducted that the proposed model has a good performance and is capable of evaluating the Vs of granular soil.

摘要

本文研究了相对密度、平均有效应力、分级特性、固结应力比和样品制备过程中产生的初始组 构各向异性对剪切波速度(Vs)的影响。结果表明, 在给定的相对密度和有效约束应力下, 处于各向异 性压缩应力下的固结试样与各向同性或各向异性延伸应力状态下的固结试样相比, 其剪切波速度更快。 实验发现制备重组样品的沉积技术对剪切波速有重要影响, 并对共振柱和弯曲元件实验的测量值进行 了平行比较, 所得结果用于建立一种预测颗粒状土壤剪切波速的广义关系。利用文献数据对Vs 模型进 行验证, 结果表明该模型表现良好, 能够评价颗粒状土壤的剪切波速。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ABBASZADEH S A, BEHZADAFSHAR K, RAJABLOU R. Verification of a new method for evaluation of liquefaction potential analysis [J]. Arab J Geosci, 2013, 6: 881–892. DOI: https://doi.org/10.1007/s12517-011-0348-x.

    Article  Google Scholar 

  2. CLAYTON C R I. Stiffness at small strain: Research and practice [J]. Geotechnique, 2011, 61: 5–37. DOI: https://doi.org/10.1680/geot.2011.61.1.5.

    Article  Google Scholar 

  3. LIANG J, HAN B, TODOROVSKA M I, TRIFUNAC M D. 2D dynamic structure-soil-structure interaction for twin buildings in layered half-space II: Incident SV-waves [J]. Soil Dyn Earthq Eng, 2018, 113: 356–390. DOI: https://doi.org/10.1016/j.soildyn.2018.05.023.

    Article  Google Scholar 

  4. BOUAZZA A, AVALLE D L. Effectiveness of rolling dynamic compaction on an old waste tip [C]// 5th ICEG Environmental Geotechnics: Opportunities, Challenges and Responsibilities for Environmental Geotechnics — Proceedings of the ISSMGE 5th Int Congress. 2006: 384–390.

  5. ÖZENER P. Estimation of residual shear strength ratios of liquefied soil deposits from shear wave velocity [J]. Earthq Eng Eng Vib, 2012, 11: 461–484. DOI: https://doi.org/10.1007/s11803-012-0134-0.

    Article  Google Scholar 

  6. HUSSIEN M N, KARRAY M. Shear wave velocity as a geotechnical parameter: An overview [J]. Can Geotech J, 2016, 53: 252–272. DOI: https://doi.org/10.1139/cgj-2014-0524.

    Article  Google Scholar 

  7. AL-AMRI A, FNAIS M, ABDELRAHMAN K, ABDELMONEIM E, ALQARNI H. New methods to improve the assessment of shear wave velocities and seismic hazard parameters in Jeddah city, western Saudi Arabia [J]. Arab J Geosci, 2016, 9: 1–15. DOI: https://doi.org/10.1007/s12517-015-2297-2.

    Article  Google Scholar 

  8. SALAH M K. Seismic anisotropy structure beneath the southeastern Mediterranean from shear-wave splitting [J]. Arab J Geosci, 2013, 6: 1717–1730. DOI: https://doi.org/10.1007/s12517-011-0480-7.

    Article  Google Scholar 

  9. DAMM J C, LEWIS M R, STOKOE K H, MOORE D P. Comparison of in situ and laboratory shear wave velocity measurements in compacted backfill [J]. Geotech Test J, 2013, 36: 20120140. DOI: https://doi.org/10.1520/GTJ20120140.

    Article  Google Scholar 

  10. GU X Q, YANG J, HUANG M S. Laboratory investigation on relationship between degree of saturation, B-value and P-wave velocity [J]. Journal of Central South University, 2013, 20: 2001–2007. DOI: https://doi.org/10.1007/s11771-013-1701-x.

    Article  Google Scholar 

  11. BAYAT M, GHALANDARZADEH A. Stiffness degradation and damping ratio of sand-gravel mixtures under saturated state [J]. Int J Civ Eng, 2018, 16: 1261–1277. DOI: https://doi.org/10.1007/s40999-017-0274-8.

    Article  Google Scholar 

  12. CHENG Z, LEONG E C. Determination of damping ratios for soils using bender element tests [J]. Soil Dyn Earthq Eng, 2018, 111: 8–13. DOI: https://doi.org/10.1016/j.soildyn.2018.04.016.

    Article  Google Scholar 

  13. EZAOUI A, DI BENEDETTO H. Experimental measurements of the global anisotropic elastic behaviour of dry hostun sand during triaxial tests, and effect of sample preparation [J]. Geotechnique, 2009, 59: 621–635. DOI: https://doi.org/10.1680/geot.7.00042.

    Article  Google Scholar 

  14. KARRAY M, ROMDHAN M B, HUSSIEN M N, ÉTHIER Y. Measuring shear wave velocity of granular material using the piezoelectric ring-actuator technique (P-RAT) [J]. Can Geotech J, 2015, 52: 1302–1317. DOI: https://doi.org/10.1139/cgj-2014-0306.

    Article  Google Scholar 

  15. EHSANI M, SHARIATMADARI N, MIRHOSSEINI S M. Shear modulus and damping ratio of sand-granulated rubber mixtures [J]. Journal of Central South University, 2015, 22: 3159–3167. DOI: https://doi.org/10.1007/s11771-015-2853-7.

    Article  Google Scholar 

  16. BAYAT M. Universal model forms for predicting the dynamic properties of granular soils [J]. Acta Geodyn Geomater, 2020, 17: 217–227. DOI: https://doi.org/10.13168/agg.2020.0016.

    Article  Google Scholar 

  17. YUAN X, SUN J, SUN R. A modified approach for calculating dynamic shear modulus of stiff specimens by resonant column tests [J]. Earthq Eng Eng Vib, 2006, 5: 143–150. DOI: https://doi.org/10.1007/s11803-006-0472-x.

    Article  Google Scholar 

  18. DYVIK R, MADSHUS C. Lab measurements of gmax using bender elements [J]. Publ-Norges Geotek Inst, 1986: 186–196.

  19. HE H, SENETAKIS K. A study of wave velocities and poisson ratio of recycled concrete aggregate [J]. Soils Found, 2016, 56: 593–607. DOI: https://doi.org/10.1016/j.sandf.2016.07.002.

    Article  Google Scholar 

  20. GREENING P D, NASH D F T. Frequency domain determination of G0 using bender elements [J]. Geotech Test J, 2004, 27: 288–294. DOI: https://doi.org/10.1520/gtj11192.

    Google Scholar 

  21. DA FONSECA A V, FERREIRA C, FAHEY M. A framework interpreting bender element tests, combining time-domain and frequency-domain methods [J]. Geotech Test J, 2009, 32: 91–107. DOI: https://doi.org/10.1520/GTJ100974.

    Google Scholar 

  22. ALVARADO G, COOP M R. On the performance of bender elements in triaxial tests [J]. Geotechnique, 2012, 62: 1–17. DOI: https://doi.org/10.1680/geot.7.00086.

    Article  Google Scholar 

  23. LEE J S, SANTAMARINA J C. Bender elements: Performance and signal interpretation [J]. J Geotech Geoenvironmental Eng, 2005, 131: 1063–1070. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063).

    Article  Google Scholar 

  24. MONTOYA B M, DEJONG J T, BOULANGER R W. Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation [J]. Geotechnique, 2013, 63: 302–312. DOI: https://doi.org/10.1680/geot.SIP13.P.019.

    Article  Google Scholar 

  25. KHAN Z, EL NAGGAR M H, CASCANTE G. Frequency dependent dynamic properties from resonant column and cyclic triaxial tests [J]. J Franklin Inst, 2011, 348: 1363–1376. DOI: https://doi.org/10.1016/j.jfranklin.2010.04.003.

    Article  MATH  Google Scholar 

  26. YOUN J U, CHOO Y W, KIM D S. Measurement of small-strain shear modulus Gmax of dry and saturated sands by bender element, resonant column, and torsional shear tests [J]. Can Geotech J, 2008, 45: 1426–1438. DOI: https://doi.org/10.1139/T08-069.

    Article  Google Scholar 

  27. GU X, YANG J, HUANG M. Laboratory measurements of small strain properties of dry sands by bender element [J]. Soils Found, 2013, 53: 735–745. DOI: https://doi.org/10.1016/j.sandf.2013.08.011.

    Article  Google Scholar 

  28. LING H I, CALLISTO L, LESHCHINSKY D, KOSEKI J. Soil stress-strain behavior: Measurement, modeling and analysis [C]// International Conference on Geotechnical Symposium. Rome, Italy: Springer Verlag. 2006.

    Google Scholar 

  29. CAMACHO-TAUTA J. Shear modulus reduction curves of Guayuriba sands by cyclic triaxial and bender element tests [C]// Third Int Conf Geotech Constr Mater Environ Nagoya. Japan, 2013: 3–9. DOI: https://doi.org/10.13140/2.1.3915.5842.

  30. SOUTO A, HARTIKAINEN J, ÖZÜDOĞRU K. Measurement of dynamic parameters of road pavement materials by the bender element and resonant column tests [J]. Geotechnique, 1994, 44: 519–526. DOI: https://doi.org/10.1680/geot.1994.44.3.519.

    Article  Google Scholar 

  31. ZHOU Y, SUN Z, CHEN J, CHEN Y, CHEN R. Shear wave velocity-based evaluation and design of stone column improved ground for liquefaction mitigation [J]. Earthq Eng Eng Vib, 2017, 16: 247–261. DOI: https://doi.org/10.1007/s11803-017-0380-2.

    Article  Google Scholar 

  32. CHOO H, BATE B, BURNS S E. Effects of organic matter on stiffness of overconsolidated state and anisotropy of engineered organoclays at small strain [J]. Eng Geol, 2015, 184: 19–28. DOI: https://doi.org/10.1016/j.enggeo.2014.10.022.

    Article  Google Scholar 

  33. HARDIN, B O, BLACK W L. Sand stiffness under various triaxial stresses [J]. J Terramechanics, 1967, 92(2): 27–42. DOI: https://doi.org/10.1016/0022-4898(67)90133-4.

    Google Scholar 

  34. D’ELIA B, LANZO G. Laboratory and field determinations of small-strain shear modulus of natural soil deposits [C]// Earthq Eng 11th World Conf. Acapulco, Mex, 1996: 23–28.

  35. IWASAKI T, TATSUOKA F, TAKAGI Y. Shear moduli of sands under cyclic torsional shear loading [J]. Soils Found, 1978, 18: 39–56. DOI: https://doi.org/10.3208/sandf1972.18.39.

    Article  Google Scholar 

  36. LO PRESTI D C F, PALLARA O, LANCELLOTTA R, ARMANDI M, MANISCALCO R. Monotonic and cyclic loading behavior of two sands at small strains [J]. Geotech Test J, 1993, 16: 409–424. DOI: https://doi.org/10.1520/GTJ10281J.

    Article  Google Scholar 

  37. BIAREZ J, HICHER P Y. Elementary mechanics of soil behaviour: Saturated remoulded soils [M]. Rotterdam, the Netherlands: Balkema, 1994.

    Google Scholar 

  38. YANG J, LIU X, RAHMAN M M, LO R, GOUDARZY M, SCHANZ T. Shear wave velocity and stiffness of sand: The role of non-plastic fines [J]. Geotechnique, 2018, 68: 931–934. DOI: https://doi.org/10.1680/jgeot.16.D.006.

    Article  Google Scholar 

  39. PAYAN M, SENETAKIS K, KHOSHGHALB A, KHALILI N. Characterization of the small-strain dynamic behaviour of silty sands; contribution of silica non-plastic fines content [J]. Soil Dyn Earthq Eng, 2017, 102: 232–240. DOI: https://doi.org/10.1016/j.soildyn.2017.08.008.

    Article  Google Scholar 

  40. ESCRIBANO D E, NASH D F T. Changing anisotropy of G0 in Hostun sand during drained monotonic and cyclic loading [J]. Soils Found, 2015, 55: 974–984. DOI: https://doi.org/10.1016/j.sandf.2015.09.004.

    Article  Google Scholar 

  41. PAYAN M, SENETAKIS K, KHOSHGHALB A, KHALILI N. Characterization of small-strain shear modulus of sands subjected to anisotropic states of stress [J]. Poromechanics 2017-Proc 6th Biot Conf Poromechanics, 2017: 913–920. DOI: https://doi.org/10.1061/9780784480779.113.

  42. HARDIN B O, RICHART F E J. Elastic wave velocities in granular soils [J]. J Soil Mech Found Div ASCE, 1963, 89: 33–65.

    Article  Google Scholar 

  43. CHIEN L K, OH Y N. Influence of fines content and initial shear stress on dynamic properties of hydraulic reclaimed soil [J]. Can Geotech J, 2002, 39: 242–253. DOI: https://doi.org/10.1139/t01-082.

    Article  Google Scholar 

  44. CUNNING J C, ROBERTSON K, SEGO D C. Shear wave velocity to evaluate in situ state [J]. Can Geotech J, 1995, 32: 848–858.

    Article  Google Scholar 

  45. CHO G C, DODDS J, SANTAMARINA J C. Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands [J]. J Geotech Geoenvironmental Eng, 2006, 132: 591–602. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591).

    Article  Google Scholar 

  46. BROCANELLI D, RINALDI V. Measurement of low-strain material damping and wave velocity with bender elements in the frequency domain [J]. Can Geotech J, 1998, 35: 1032–1040. DOI: https://doi.org/10.1139/t98-058.

    Article  Google Scholar 

  47. ARULNATHAN R, BOULANGER R W, RIEMER M F. Analysis of bender element tests [J]. Geotech Test J, 1998, 21: 120–131. DOI: https://doi.org/10.1520/gtj10750j.

    Article  Google Scholar 

  48. BUI M T. Influence of some particle characteristics on the small strain response of granular materials [D]. Southampton, UK: University of Southampton, 2009.

    Google Scholar 

  49. HUANG A B I N, CHANG W J, HSU H H, HUANG Y J. A mist pluviation method for reconstituting silty sand specimens [J]. Eng Geol, 2015, 188: 1–9. DOI: https://doi.org/10.1016/j.enggeo.2015.01.015.

    Article  Google Scholar 

  50. TATSUOKA F, IWASAKJI T, YOSIDA S, FUKUSHIMA S, SUDO H. Shear modulus and damping by drained tests on clean sand specimens reconstituted by various methods [J]. Soils Found, 1979, 19: 39–54. DOI: https://doi.org/10.3208/sandf1972.19.39.

    Article  Google Scholar 

  51. RASHIDIAN M, ISHIHARA K, KOKUSHO T, KANATANI M, OKAMOTO T. Effect of sample preparation methods on shear wave velocity [C]// Proc Second Int Conf Seismol Earthq Eng. Teheran, Iran, 1995: 1501–1508.

  52. SELIG E, ALBA P, BALDWIN K, JANOO V, ROE G, CELIKKOL B. Elastic-wave velocities and liquefaction potential [J]. Geotech Test J, 1984, 7: 77–88. DOI: https://doi.org/10.1520/gtj10596j.

    Article  Google Scholar 

  53. GU X, YANG J, HUANG M, GAO G. Bender element tests in dry and saturated sand: Signal interpretation and result comparison [J]. Soils Found, 2015, 55: 951–962. DOI: https://doi.org/10.1016/j.sandf.2015.09.002.

    Article  Google Scholar 

  54. BAYAT M, GHALANDARZADEH A. Modified models for predicting dynamic properties of granular soil under anisotropic consolidation [J]. Int J Geomech, 2020, 20: 1–15. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0001607.

    Article  Google Scholar 

  55. ISHIHARA K. Soil behaviour in earthquake geotechnics [M]. vol. 34. Clarendon Press, 1997. DOI: https://doi.org/10.5860/choice.34-5113.

  56. VIGGIANI G, ATKINSON J H. Stiffness of fine-grained soil at very small strains [J]. Geotechnique, 1995, 45: 249–265. DOI: https://doi.org/10.1680/geot.1995.45.2.249.

    Article  Google Scholar 

  57. JOVIČIĆ V, COOP M R. The measurement of stiffness anisotropy in clays with bender element tests in the triaxial apparatus [J]. Geotech Test J, 1998, 21: 3–10. DOI: https://doi.org/10.1520/gtj10419j.

    Article  Google Scholar 

  58. RAMPELLO S, VIGGIANI G M B, AMOROSI A. Small-strain stiffness of reconstituted clay compressed along constant triaxial effective stress ratio paths [J]. Geotechnique, 1997, 47: 475–489. DOI: https://doi.org/10.1680/geot.1997.47.3.475.

    Article  Google Scholar 

  59. PAYAN M, KHOSHGHALB A, SENETAKIS K, KHALILI N. Small-strain stiffness of sand subjected to stress anisotropy [J]. Soil Dyn Earthq Eng, 2016, 88: 143–151. DOI: https://doi.org/10.1016/j.soildyn.2016.06.004.

    Article  Google Scholar 

  60. SUN J, GONG M, TAO X. Dynamic shear modulus of undisturbed soil under different consolidation ratios and its effects on surface ground motion [J]. Earthq Eng Eng Vib, 2013, 12: 561–568. DOI: https://doi.org/10.1007/s11803-013-0197-6.

    Article  Google Scholar 

  61. ZHOU W, CHEN Y, MA G, YANG L, CHANG X. A modified dynamic shear modulus model for rockfill materials under a wide range of shear strain amplitudes [J]. Soil Dyn Earthq Eng, 2017, 92: 229–238. DOI: https://doi.org/10.1016/j.soildyn.2016.10.027.

    Article  Google Scholar 

  62. CHEN G X, ZHOU Z L, SUN T, WU Q, XU L Y, KHOSHNEVISAN S, LING D S. Shear modulus and damping ratio of sand-gravel mixtures over a wide strain range [J]. J Earthq Eng, 2019, 23: 1407–1440. DOI: https://doi.org/10.1080/13632469.2017.1387200.

    Article  Google Scholar 

  63. ARROYO M. Pulse tests in soil samples [D]. UK, Arulnathan: University of Bristol, 2001. DOI: https://doi.org/10.13140/2.1.3249.9848.

    Google Scholar 

  64. BRIGNOLI E G M, GOTTI M, STOKOE K H. Measurement of shear waves in laboratory specimens by means of piezoelectric transducers [J]. Geotech Test J, 1996, 19: 384–397. DOI: https://doi.org/10.1520/gtj10716j.

    Article  Google Scholar 

  65. LADD R S. Preparing test specimens using undercompaction [J]. Geotechnical Testing Journal, 1978, 1(1): 16–23.

    Article  Google Scholar 

  66. MALEKI M, BAYAT M. Experimental evaluation of mechanical behavior of unsaturated silty sand under constant water content condition [J]. Eng Geol, 2012, 141–142: 45–56. DOI: https://doi.org/10.1016/j.enggeo.2012.04.014.

    Article  Google Scholar 

  67. CAMACHO-TAUTA J F, REYES-ORTIZ O J, ÁLVAREZ J D J. Comparison between resonant-column and bender element tests on three types of soils [J]. DYNA Journal, 2013, 80: 163–172.

    Google Scholar 

  68. CAI Y, DONG Q, WANG J, GU C, XU C. Measurement of small strain shear modulus of clean and natural sands in saturated condition using bender element test [J]. Soil Dyn Earthq Eng, 2015, 76: 100–110. DOI: https://doi.org/10.1016/j.soildyn.2014.12.013.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bayat Meysam.

Additional information

Conflict of interest

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meysam, B. Shear wave velocity in granular soil considering effects of inherent and stress-induced anisotropy. J. Cent. South Univ. 28, 1476–1492 (2021). https://doi.org/10.1007/s11771-021-4711-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4711-0

Key words

关键词

Navigation