Skip to main content
Log in

Effects of grafting cell penetrate peptide and RGD on endocytosis and biological effects of Mg-CaPNPs-CKIP-1 siRNA carrier system in vitro

接枝 TAT 和 RGD 对 Mg-CaPNPs-CKIP-1 siRNA 载体系统的体外胞吞和生物学效应的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Calcium phosphate nanoparticles (CaPNPs) have good biocompatibility as gene carriers; however, CaPNPs typically exhibit a low transfection efficiency. Cell penetrate peptide (TAT) can increase the uptake of nanoparticles but is limited by its non-specificity. Grafting adhesion peptide adhesion peptide on carriers can enhance their targeting. The Plekho1 gene encodes casein kinase-2 interacting protein-1 (CKIP-1) , which can negatively regulate osteogenic differentiation. Based on the above, we produced a Mg-CaPNPs-RGD-TAT-CKIP-1 siRNA carrier system via hydrothermal synthesis, silanization and adsorption. The effects of this carrier system on cell endocytosis and biological effects were evaluated by cell culture in vitro. The results demonstrate that CaPNPs with 7% Mg (60 nm particle size, short rod shape and good dispersion) were suitable for use as gene carriers. The carrier system boosted the endocytosis of MG63 cells and was helpful for promoting the differentiation of osteoblasts, and the dual-ligand system possessed a synergistic effect. The findings of this study show the tremendous potential of the Mg-CaPNPs-RGD-TAT-CKIP-1 siRNA carrier system for efficient delivery into cells and osteogenesis inducement.

摘要

磷酸钙纳米粒 (CaPNPs) 作为基因载体具有良好的生物相容性;然而, CaPNPs 通常表现出较低的转染效率。细胞穿透肽 (TAT) 可以增加纳米颗粒的摄取, 但由于其非特异性而受到限制。纳米载体表面接枝细胞黏附肽 (精氨酸-甘氨酸-天冬氨酸, RGD) 可增强其靶向性。Plekho1 基因编码酪蛋白激酶-2 相互作用蛋白-1 (CKIP-1) 可负调控成骨分化。在此基础上, 本研究通过水热合成法、硅烷化法和吸附法制备了 Mg-CaPNPs-RGD-TAT-CKIP-1 siRNA 载体系统。通过体外细胞培养, 评价了该载体系统对细胞胞吞及生物学效应的影响。结果表明, 掺镁7%的CaPNPs (粒径 60 nm, 短棒形, 分散性好) 适合作为基因载体。载体系统促进了 MG63 细胞的内吞作用, 有利于促进成骨细胞的分化, 且双配体系统具有协同作用。结果表明, Mg-CaPNPs-RGD-TAT-CKIP-1 siRNA 载体系统在高效转运进入细胞和诱导成骨方面具有巨大的潜力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. ZHOU Z X, LIU X R, ZHU D C, WANG Y, ZHANG Z, ZHOU X F, QIU N S, CHEN X S, SHEN Y Q. Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration [J]. Advanced Drug Delivery Reviews, 2017, 115: 115–154. DOI: https://doi.org/10.1016/j.addr.2017.07.021.

    Article  Google Scholar 

  2. AKHTAR S, BENTER I. Toxicogenomics of non-viral drug delivery systems for RNAi: Potential impact on siRNA-mediated gene silencing activity and specificity [J]. Advanced Drug Delivery Reviews, 2007, 59 (2) : 164–182. DOI: https://doi.org/10.1016/j.addr.2007.03.010.

    Article  Google Scholar 

  3. SZEBENI J, BARANYI L, SAVAY S, MILOSEVITS J, BUNGER R, LAVERMAN P, METSELAAR J M, STORM G, CHANAN-KHAN A, LIEBES L, MUGGIA F M, COHEN R, BARENHOLZ Y, ALVING C R. Role of complement activation in hypersensitivity reactions to Doxil and HYNIC PEG liposomes: Experimental and clinical studies [J]. Journal of Liposome Research, 2002, 12 (1,2) : 165–172.

    Article  Google Scholar 

  4. van den HOVEN J M, NEMES R, METSELAAR J M, NUIJEN B, BEIJNEN J H, STORM G, SZEBENI J. Complement activation by PEGylated liposomes containing prednisolone [J]. European Journal of Pharmaceutical Sciences, 2013, 49 (2) : 265–271. DOI: https://doi.org/10.1016/j.ejps.2013.03.007.

    Article  Google Scholar 

  5. BAKAN F, KARA G, COKOL CAKMAK M, DENKBAS E B. Synthesis and characterization of amino acid-functionalized calcium phosphate nanoparticles for siRNA delivery [J]. Colloids and Surfaces B: Biointerfaces, 2017, 158: 175–181. DOI: https://doi.org/10.1016/j.colsurfb.2017.06.028.

    Article  Google Scholar 

  6. ROJAS-SÁNCHEZ L, ZHANG E, SOKOLOVA V, ZHONG M, YAN H, LU M, LI Q, YAN H, EPPLE M. Genetic immunization against hepatitis B virus with calcium phosphate nanoparticles in vitro and in vivo [J]. Acta Biomaterialia, 2020, 110: 254–265. DOI: https://doi.org/10.1016/j.actbio.2020.04.021.

    Article  Google Scholar 

  7. KHAN M A, WU V M, GHOSH S, USKOKOVIĆ V. Gene delivery using calcium phosphate nanoparticles: Optimization of the transfection process and the effects of citrate and poly (llysine) as additives [J]. Journal of Colloid and Interface Science, 2016, 471: 48–58. DOI: https://doi.org/10.1016/j.jcis.2016.03.007.

    Article  Google Scholar 

  8. SABOURIAN P, YAZDANI G, ASHRAF S S, FROUNCHI M, MASHAYEKHAN S, KIANI S, KAKKAR A. Effect of physico-chemical properties of nanoparticles on their intracellular uptake [J]. International Journal of Molecular Sciences, 2020, 21 (21) : 8019. DOI: https://doi.org/10.3390/ijms21218019.

    Article  Google Scholar 

  9. LASKUS A, KOLMAS J. Ionic substitutions in non-apatitic calcium phosphates [J]. International Journal of Molecular Sciences, 2017, 18 (12) : 2542. DOI: https://doi.org/10.3390/ijms18122542.

    Article  Google Scholar 

  10. TITE T, POPA A C, BALESCU L M, BOGDAN I M, PASUK I, FERREIRA J M F, STAN G E. Cationic substitutions in hydroxyapatite: Current status of the derived biofunctional effects and their in vitro interrogation methods [J]. Materials (Basel, Switzerland) , 2018, 11 (11) : 2081. DOI: https://doi.org/10.3390/ma11112081.

    Article  Google Scholar 

  11. HANIFI A, FATHI M H, SADEGHI H, VARSHOSAZ J M. Mg2+ substituted calcium phosphate nano particles synthesis for non viral gene delivery application [J]. Journal of Materials Science: Materials in Medicine, 2010, 21 (8) : 2393–2401. DOI: https://doi.org/10.1007/s10856-010-4088-3.

    Google Scholar 

  12. KIM W, KIM W K, LEE K, SON M J, KWAK M, CHANG W S, MIN J K, SONG N W, LEE J, BAE K H. A reliable approach for assessing size-dependent effects of silica nanoparticles on cellular internalization behavior and cytotoxic mechanisms [J]. International Journal of Nanomedicine, 2019, 14: 7375–7387. DOI: https://doi.org/10.2147/IJN.S224183.

    Article  Google Scholar 

  13. NEUMANN S, KOVTUN A, DIETZEL I D, EPPLE M, HEUMANN R. The use of size-defined DNA-functionalized calcium phosphate nanoparticles to minimise intracellular calcium disturbance during transfection [J]. Biomaterials, 2009, 30 (35) : 6794–6802. DOI: https://doi.org/10.1016/j.biomaterials.2009.08.043.

    Article  Google Scholar 

  14. CHEN Liang-jian, CHEN Tian, CAO Jun. Effect of Tb/Mg doping on composition and physical properties of hydroxyapatite nanoparticles for gene vector application [J]. Transactions of Nonferrous Metals Society of China, 2018, 28 (1) : 125–136. DOI: https://doi.org/10.1016/S1003-6326(18)64645-X.

    Article  Google Scholar 

  15. ZOU L, PENG Q L, WANG P, ZHOU B T. Progress in research and application of HIV-1 TAT-derived cell-penetrating peptide [J]. The Journal of Membrane Biology, 2017, 250 (2) : 115–122. DOI: https://doi.org/10.1007/s00232-016-9940-z.

    Article  Google Scholar 

  16. ZHANG W J, MAO Z W, GAO C Y. Preparation of TAT peptide-modified poly (N-isopropylacrylamide) microgel particles and their cellular uptake, intracellular distribution, and influence on cytoviability in response to temperature change [J]. Journal of Colloid and Interface Science, 2014, 434: 122–129. DOI: https://doi.org/10.1016/j.jcis.2014.07.031.

    Article  Google Scholar 

  17. YAMANO S, DAI J, YUVIENCO C, KHAPLI S, MOURSI A M, MONTCLARE J K. Modified Tat peptide with cationic lipids enhances gene transfection efficiency via temperature-dependent and caveolae-mediated endocytosis [J]. Journal of Controlled Release, 2011, 152 (2) : 278–285. DOI: https://doi.org/10.1016/j.jconrel.2011.02.004.

    Article  Google Scholar 

  18. LI Q, HAO X F, WANG H N, GUO J T, REN X K, XIA S H, ZHANG W C, FENG Y K. Multifunctional REDV-G-TAT-G-NLS-Cys peptide sequence conjugated gene carriers to enhance gene transfection efficiency in endothelial cells [J]. Colloids and Surfaces B: Biointerfaces, 2019, 184: 110510. DOI: https://doi.org/10.1016/j.colsurfb.2019.110510.

    Article  Google Scholar 

  19. HO A, SCHWARZE S R, MERMELSTEIN S J, WAKSMAN G, DOWDY S F. Synthetic protein transduction domains: enhanced transduction potential in vitro and in vivo [J]. Cancer Research, 2001, 61 (2) : 474–477.

    Google Scholar 

  20. MARCUCCI F, LEFOULON F. Active targeting with particulate drug carriers in tumor therapy: Fundamentals and recent progress [J]. Drug Discovery Today, 2004, 9 (5) : 219–228. DOI: https://doi.org/10.1016/S1359-6446(03)02988-X.

    Article  Google Scholar 

  21. LV H, ZHU Q, LIU K W, ZHU M M, ZHAO W F, MAO Y, LIU K H. Coupling of a bifunctional peptide R13 to OTMCSPEI copolymer as a gene vector increases transfection efficiency and tumor targeting [J]. International Journal of Nanomedicine, 2014, 9: 1311–1322. DOI: https://doi.org/10.2147/IJN.S59726.

    Article  Google Scholar 

  22. CHEN Tian, CHEN Liang-jian, HE Hui-li. Influence of HAnps carrier system with doping Mg and grafting RGD on endocytosis of MG63 cells [J]. Journal of Central South University (Science and Technology) , 2017, 48 (3) : 625–634. (in Chinese)

    Google Scholar 

  23. WU D N, ZHANG Y N, XU X T, GUO T, XIE D M, ZHU R, CHEN S F, RAMAKRISHNA S, HE L M. RGD/TAT-functionalized chitosan-graft-PEI-PEG gene nanovector for sustained delivery of NT-3 for potential application in neural regeneration [J]. Acta Biomaterialia, 2018, 72: 266–277. DOI: https://doi.org/10.1016/j.actbio.2018.03.030.

    Article  Google Scholar 

  24. HUANG Z G, LV F M, WANG J, CAO S J, LIU Z P, LIU Y, LU W Y. RGD-modified PEGylated paclitaxel nanocrystals with enhanced stability and tumor-targeting capability [J]. International Journal of Pharmaceutics, 2019, 556: 217–225. DOI: https://doi.org/10.1016/j.ijpharm.2018.12.023.

    Article  Google Scholar 

  25. LU K F, YIN X S, WENG T J, XI S L, LI L, XING G C, CHENG X, YANG X, ZHANG L Q, HE F C. Targeting WW domains linker of HECT-type ubiquitin ligase Smurf1 for activation by CKIP-1 [J]. Nature Cell Biology, 2008, 10 (8) : 994–1002. DOI: https://doi.org/10.1038/ncb1760.

    Article  Google Scholar 

  26. SAFI A, VANDROMME M, CAUSSANEL S, VALDACCI L, BAAS D, VIDAL M, BRUN G, SCHAEFFER L, GOILLOT E. Role for the pleckstrin homology domain-containing protein CKIP-1 in phosphatidylinositol 3-kinase-regulated muscle differentiation [J]. Molecular and Cellular Biology, 2004, 24 (3) : 1245–1255. DOI: https://doi.org/10.1128/MCB.24.3.1245-1255.2004.

    Article  Google Scholar 

  27. GUO B S, ZHANG B T, ZHENG L Z, TANG T, LIU J, WU H, YANG Z J, PENG S L, HE X J, ZHANG H Q, YUE K K, HE F C, ZHANG L Q, QIN L, BIAN Z X, TAN W H, LIANG Z C, LU A P, ZHANG G. Therapeutic RNA interference targeting CKIP-1 with a cross-species sequence to stimulate bone formation [J]. Bone, 2014, 59: 76–88. DOI: https://doi.org/10.1016/j.bone.2013.11.007.

    Article  Google Scholar 

  28. SUZUKI T, ISHIGAKI K, MIYAKE M. Synthetic hydroxyapatites employed as inorganic cation-exchangers [J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1981, 5 (5) : 1059–1062.

    Article  Google Scholar 

  29. REN F, LENG Y, XIN R, GE X. Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite [J]. Acta Biomaterialia, 2010, 6 (7) : 2787–2796. DOI: https://doi.org/10.1016/j.actbio.2009.12.044.

    Article  Google Scholar 

  30. LAURENCIN D, ALMORA-BARRIOS N, de LEEUW N H, GERVAIS C, BONHOMME C, MAURI F, CHRZANOWSKI W, KNOWLES J C, NEWPORT R J, WONG A, GAN Z, SMITH M E. Magnesium incorporation into hydroxyapatite [J]. Biomaterials, 2011, 32 (7) : 1826–1837. DOI: https://doi.org/10.1016/j.biomaterials.2010.11.017.

    Article  Google Scholar 

  31. WANG Hui-yun, CUI Ya-nan, ZHANG Chun-yan. Influence factors on the zeta potential of colloid particle [J]. China Medical Herald, 2010, 7 (20) : 28–30. (in Chinese)

    Google Scholar 

  32. RETAMAL M R R, BABICK F, HILLEMANN L. Zeta potential measurements for non-spherical colloidal particles — Practical issues of characterisation of interfacial properties of nanoparticles [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532: 516–521. DOI: https://doi.org/10.1016/j.colsurfa.2017.04.010.

    Article  Google Scholar 

  33. ZHANG S, LI J, LYKOTRAFITIS G, BAO G, SURESH S. Size-dependent endocytosis of nanoparticles [J]. Advanced Materials, 2009, 21 (4) : 419–424. DOI: https://doi.org/10.1002/adma.200801393.

    Article  Google Scholar 

  34. CHUA P H, NEOH K G, KANG E T, WANG W. Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion [J]. Biomaterials, 2008, 29 (10) : 1412–1421. DOI: https://doi.org/10.1016/j.biomaterials.2007.12.019.

    Article  Google Scholar 

  35. TAUBENBERGER A V, WOODRUFF M A, BAI H, MULLER D J, HUTMACHER D W. The effect of unlocking RGD-motifs in collagen I on pre-osteoblast adhesion and differentiation [J]. Biomaterials, 2010, 31 (10) : 2827–2835. DOI: https://doi.org/10.1016/j.biomaterials.2009.12.051.

    Article  Google Scholar 

  36. BELLIS S L. Advantages of RGD peptides for directing cell association with biomaterials [J]. Biomaterials, 2011, 32 (18) : 4205–4210. DOI: https://doi.org/10.1016/j.biomaterials.2011.02.029.

    Article  Google Scholar 

  37. WILKINSON A L, BARRETT J W, SLACK R J. Pharmacological characterisation of a tool αvβ1 integrin small molecule RGD-mimetic inhibitor [J]. European Journal of Pharmacology, 2019, 842: 239–247. DOI: https://doi.org/10.1016/j.ejphar.2018.10.045.

    Article  Google Scholar 

  38. HUANG Ji-chun, CAI Hua-rong, JIANG Yao-quan. Construction of RGD-TAT modified liposomes and evaluation of its targeting on glioma [J]. Chinese Journal of Biochemical Pharmaceutics, 2014, 34 (3) : 1–3. (in Chinese)

    Google Scholar 

  39. al SORAJ M, HE L, PEYNSHAERT K, COUSAERT J, VERCAUTEREN D, BRAECKMANS K, de SMEDT S C, JONES A T. siRNA and pharmacological inhibition of endocytic pathways to characterize the differential role of macropinocytosis and the actin cytoskeleton on cellular uptake of dextran and cationic cell penetrating peptides octaarginine (R8) and HIV-Tat [J]. Journal of Controlled Release, 2012, 161 (1) : 132–141. DOI: https://doi.org/10.1016/j.jconrel.2012.03.015.

    Article  Google Scholar 

  40. FUSARO M, CREPALDI G, MAGGI S, D’ANGELO A, CALO L, MIOZZO D, FORNASIERI A, GALLIENI M. Bleeding, vertebral fractures and vascular calcifications in patients treated with warfarin: Hope for lower risks with alternative therapies.[J]. Current Vascular Pharmacology, 2011, 9 (6) : 763–769.

    Article  Google Scholar 

  41. MARELLI B, GHEZZI C E, BARRALET J E, BOCCACCINI A R, NAZHAT S N. Three-dimensional mineralization of dense nanofibrillar collagen-bioglass hybrid scaffolds [J]. Biomacromolecules, 2010, 11 (6) : 1470–1479. DOI: https://doi.org/10.1021/bm1001087.

    Article  Google Scholar 

  42. FU Ce-guang, LIU Jie, XIA Hai-bin. Biological characteristics of osteopontin and its role in bone remodeling [J]. Journal of Clinical Stomatology, 2012, 28 (8) : 506–508. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-jian Chen  (陈良建).

Additional information

Foundation item

Project (81571021) supported by the National Natural Science Foundation of China; Project (2018zzts944) supported by the Graduate Student Independent Exploration Innovation Fund of the Central South University, China; Projects (2015WK3012, 2018SK2017) supported by the Hunan Provincial Science and Technology Department, China; Project (20160301) supported by New Talent Project of the Third Xiangya Hospital of Central South University, China

Contributors

YI Man-fei contributed to the paper writing, designed the project, carried out data processing, and performed data analysis. CHEN Liang-jian, HE Huili, and SHI Lei contributed to the conception of the study. HE Hui-li, SHI Lei, SHAO Chun-sheng, and ZHANG Bo performed data analysis and offered some valuable suggestions for the contents of the manuscript. YI Man-fei, CHEN Liang-jian replied to reviewers’ comments and revised the final version.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, Mf., Chen, Lj., He, Hl. et al. Effects of grafting cell penetrate peptide and RGD on endocytosis and biological effects of Mg-CaPNPs-CKIP-1 siRNA carrier system in vitro. J. Cent. South Univ. 28, 1291–1304 (2021). https://doi.org/10.1007/s11771-021-4697-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4697-7

Key words

关键词

Navigation