Skip to main content
Log in

Electro-osmotic chemical behavior of clayey soil under various boundary conditions

不同边界条件下黏性土的电渗化学特性

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The use of electro-osmotic chemical is an effective method to improve the clayey soil foundation. Various boundary conditions can be adopted in this method. In this work, two electrode-clay contacts, three solution conditioners, and four anode solution supply times were used for clayey soil improvement. Based on the experimental data, electro-osmotic consolidation theory, and transport of ion theory, it is found that the electro-osmotic chemical effect of the separation of electrode-clay (E_S) is more beneficial for the transport of Ca2+, production of cementing material, and reduction of water content than that of electrode-clay (E_C) joining; through electrode-clay contact separation, the anode solution conditioner (NaPO3)6 (E_SHMP) delayed the cementing reaction and then increased the transport of Ca2+ near the cathode, which increased the amount of cementing material and the electro-osmotic chemical effect; and when the anode conditioner (NaPO3)6 was used, two days of anode solution supply followed by three days cut off from the anode solution led to the highest undrained shear strength increase after the application of electro-osmotic chemical, which resolved the uneven electro-osmotic chemical effect in the E_SHMP.

摘要

电渗化学法是加固黏性土地基的有效方法, 可以对应使用多种边界条件。本文采用两种电极-黏 土接触方式、三种溶液调节剂和四种阳极溶液供应不同时间对黏性土进行电渗化学加固。根据电渗化 学实验数据、电渗固结理论和离子运移理论, 得出如下结论, 在电极-黏土分离方式下的电渗化学作用 更有利于Ca2+的运移、胶结材料的产生和黏土含水率的降低; 依托电极-黏土分离方式, 在阳极溶液中 加入调节剂(NaPO3)6(E_SHMP)延缓了胶结反应, 增加了阴极附近Ca2+的运移, 提高了胶结材料的产 量, 加强了电渗化学加固黏性土的效果; 当使用阳极调节剂(NaPO3)6 时, 在供应2 d 阳极溶液之后, 切断阳极溶液并继续进行3 d 电渗试验, 获得的黏性土不排水抗剪强度值最高, 并且解决了单纯电渗 化学效果不均匀的问题。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZOU Wei-lie, ZHUANG Yan-feng, WANG Xie-qun, VANAPALLI S K, HUANG Yun-lan, LIU Fei-fei. Electro-osmotic consolidation of marine hydraulically filled sludge ground using electrically conductive wick drain combined with automated power supply [J]. Marine Georesources and Geotechnology, 2018, 36(1): 100–107. DOI: https://doi.org/10.1080/1064119X.2017.1312721.

    Article  Google Scholar 

  2. BURNOTTE F, LEFEBVRE G, GRONDIN G. A case record of electroosmotic consolidation of soft clay with improved soil electrode contact [J]. Canadian Geotechnical Journal, 2004, 41(6): 1038–1053. DOI: https://doi.org/10.1139/t04-045.

    Article  Google Scholar 

  3. KARUNARATNE G P. Prefabricated and electrical vertical drains for consolidation of soft clayey soil [J]. Geotextiles and Geomembranes, 2011, 29(4): 391–401. DOI: https://doi.org/10.1016/j.geotexmem.2010.12.005.

    Article  Google Scholar 

  4. CHEW S H, KARUNARATNE G P, KUMA V M, LIM L H, TOH M L, HEE A M. A field trial for soft clay consolidation using electric vertical drains [J]. Geotextiles and Geomembranes, 2004, 22(1, 2): 17–35. DOI: https://doi.org/10.1016/S0266-1144(03)00049-9.

    Article  Google Scholar 

  5. ESTABRAGH A R, NASEH M, JAVADI A A. Improvement of clay soil by electro-osmosis technique [J]. Applied Clay Science, 2014, 95: 32–36. DOI: https://doi.org/10.1016/j.clay.2014.03.019.

    Article  Google Scholar 

  6. MAHMOUD A, OLIVIER J, VAXELAIRE J, HOADLEY A F A. Electro-dewatering of wastewater sludge: Influence of the operating conditions and their interactions effects [J]. Water Research, 2011, 45(9): 2795–2810. DOI: https://doi.org/10.1016/j.watres.2011.02.029.

    Article  Google Scholar 

  7. TAO Yan-li, ZHOU Jian, GONG Xiao-nan, HU Ping-chuang. Electro-osmotic dehydration of Hangzhou sludge with selected electrode arrangements [J]. Drying Technology, 2016, 34(1): 66–75. DOI: https://doi.org/10.1080/07373937.2015.1006369.

    Article  Google Scholar 

  8. XUE Zhi-jia, TANG Xiao-wei, YANG Qing, TIAN Zhi-feng, ZHANG Yao. Influence of salt content on clay electro-dewatering with copper and stainless steel anodes [J]. Drying Technology, 2019, 37(15): 2005–2019. DOI: https://doi.org/10.1080/07373937.2018.1555709.

    Article  Google Scholar 

  9. LEFEBVRE G, BURNOTTE F. Improvements of electroosmotic consolidation of soft clays by minimizing power loss at electrodes [J]. Canadian Geotechnical Journal, 2002, 39(2): 399–408. DOI: https://doi.org/10.1139/t01-102.

    Article  Google Scholar 

  10. OZKAN S, GALE R J, SEALS R K. Electrokinetic stabilization of kaolinite by injection of Al and PO43− ions [J]. Proceedings of the ICE-Ground Improvement, 1999, 3(4): 135–144. DOI: https://doi.org/10.1680/gi.1999.030401.

    Article  Google Scholar 

  11. ALSHAWABKEH A N, SHEAHAN T C, WU Xing-zhi. Coupling of electrochemical and mechanical processes in soils under DC fields [J]. Mechanics of Materials, 2004, 36(5, 6): 453–465. DOI: https://doi.org/10.1016/S0167-6636(03)00071-1.

    Article  Google Scholar 

  12. OTSUKI N, YODSUDJAI W, NISHIDA T. Feasibility study on soil improvement using electrochemical technique [J]. Construction and Building Materials, 2007, 21(5): 1046–1051. DOI: https://doi.org/10.1016/j.conbuildmat.2006.02.001.

    Article  Google Scholar 

  13. OU Chang-yu, CHIEN Shao-chi, WANG Yi-guang. On the enhancement of electroosmotic soil improvement by the injection of saline solutions [J]. Applied Clay Science, 2009, 44(1, 2): 130–136. DOI: https://doi.org/10.1016/j.clay.2008.12.014.

    Article  Google Scholar 

  14. CHIEN Shao-chi, OU Chang-yu, LEE Ying-Chiang. A novel electro-osmotic chemical treatment technique for soil improvement [J]. Applied Clay Science, 2010, 50(4): 481–492. DOI: https://doi.org/10.1016/j.clay.2010.09.014.

    Article  Google Scholar 

  15. MOHAMEDELHASSAN E, SHANG J Q. Electro-kinetics-generated pore fluid and ionic transport in an offshore calcareous soil [J]. Canadian Geotechnical Journal, 2003, 40(6): 1185–1199. DOI: https://doi.org/10.1139/t03-060.

    Article  Google Scholar 

  16. AYODELE A L, AGBEDE O A. Influence of electrochemical treatment on a typical laterite [J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2018, 171(2): 103–111. DOI: https://doi.org/10.1680/jgrim.16.00030.

    Article  Google Scholar 

  17. XUE Zhi-jia, TANG Xiao-wei, YANG Qing, TIAN Zhi-feng, ZHANG Yao, XU Wei. Mechanism of electro-osmotic chemical for clay improvement: Process analysis and clay property evolution [J]. Applied Clay Science, 2018, 166: 18–26. DOI: https://doi.org/10.1016/j.clay.2018.09.001.

    Article  Google Scholar 

  18. BEDDIAR K, TEDDY F C, DUPAS A, BERTHAUD Y, DANGLA P. Role of pH in electro-osmosis: Experimental study on NaCl-water saturated kaolinite [J]. Transport in Porous Media, 2005, 61(1): 93–107. DOI: https://doi.org/10.1007/s11242-004-6798-9.

    Article  Google Scholar 

  19. KEYKHA H A, HUAT B B K, ASADI A. Electrokinetic stabilization of soft soil using carbonate-producing bacteria [J]. Geotechnical and Geological Engineering, 2014, 32(4): 739–747. DOI: https://doi.org/10.1007/s10706-014-9753-8.

    Article  Google Scholar 

  20. PENG Jie, YE Han-ming, ALSHAWABKEHl A N. Soil improvement by electroosmotic grouting of saline solutions with vacuum drainage at the cathode [J]. Applied Clay Science, 2015, 114: 53–60. DOI: https://doi.org/10.1016/j.clay.2015.05.012.

    Article  Google Scholar 

  21. ZHANG Hang, ZHOU Guo-xiang, WU Jun-liang, ZHONG Jing, WU Jian-lin, SHI Xian-ming. Mechanism for soil reinforcement by electro-osmosis in the presence of calcium chloride [J]. Chemical Engineering Communications, 2017, 204(4): 424–433. DOI: https://doi.org/10.1080/00986445.2016.1273833.

    Article  Google Scholar 

  22. ZHANG L, WANG N W, JING L P, FANG C, SHAN Z D, LI Y Q. Electro-osmotic chemical treatment for marine clayey soils: A laboratory experiment and a field study [J]. Geotechnical Testing Journal, 2017, 40(1): 72–83. DOI: https://doi.org/10.1520/GTJ20150229.

    Article  Google Scholar 

  23. ASAVADORNDEJA P, GLAWE U. Electro-kinetic strengthening of soft clay using the anode depolarization method [J]. Bulletin of Engineering Geology and the Environment, 2005, 64(3): 237–245. DOI: https://doi.org/10.1007/s10064-005-0276-7.

    Article  Google Scholar 

  24. OU Chang-yu, CHIEN Shao-chi, SYUE Yu-ting, CHEN Chun-tao. A novel electroosmotic chemical treatment for improving the clay strength throughout the entire region [J]. Applied Clay Science, 2018, 153: 161–171. DOI: https://doi.org/10.1016/j.clay.2017.11.031.

    Article  Google Scholar 

  25. CHIEN Shao-chi, OU Chang-yu, WANG Ming-kuang. Injection of saline solutions to improve the electro-osmotic pressure and consolidation of foundation soil [J]. Applied Clay Science, 2009, 44(3, 4): 218–224. DOI: https://doi.org/10.1016/j.clay.2009.02.006.

    Article  Google Scholar 

  26. OU Chang-yu, CHIEN Shao-chi, LIU Ren-hao. A study of the effects of electrode spacing on the cementation region for electro-osmotic chemical treatment [J]. Applied Clay Science, 2015, 104: 168–181. DOI: https://doi.org/10.1016/j.clay.2014.11.027.

    Article  Google Scholar 

  27. CHIEN Shao-chi, TENG Fu-cheng, OU Chang-yu. Soil improvement of electroosmosis with the chemical treatment using the suitable operation process [J]. Acta Geotechnica, 2015, 10(6): 813–820. DOI: https://doi.org/10.1007/s11440-014-0319-y.

    Article  Google Scholar 

  28. LIAKI C, ROGERS C D F, BOARDMAN D I. Physicochemical effects on clay due to electromigration using stainless steel electrodes [J]. Journal of Applied Electrochemistry, 2010, 40(6): 1225–1237. DOI: https://doi.org/10.1007/s10800-010-0096-8.

    Article  Google Scholar 

  29. WU Ya-jun, XU Yang, ZHANG Xu-dong, LU Yi-tian, CHEN Guang, WANG Xiao-dong, SONG Bin-jie. Experimental study on vacuum preloading consolidation of landfill sludge conditioned by Fenton’s reagent under varying filter pore size [J]. Geotextiles and Geomembranes, 2021, 49(1): 109–121. DOI: https://doi.org/10.1016/j.geotexmem.2020.09.008.

    Article  Google Scholar 

  30. ESRIG M I. Pore pressures, consolidation, and electrokinetics [J]. Journal of the Soil Mechanics and Foundations Division, 1968, 4(94): 899–921.

    Article  Google Scholar 

  31. MOHAMEDELHASSAN E, SHANG J Q. Feasibility assessment of electro-osmotic consolidation on marine sediment [J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2002, 6(4): 145–152. DOI: https://doi.org/10.1680/grim.2002.6.4.145.

    Article  Google Scholar 

  32. CHIEN Shao-chi, OU Chang-yu, WANG YONG-hua. Soil improvement using electro-osmosis with the injection of chemical solutions: laboratory tests [J]. Journal of the Chinese Institute of Engineers, 2011, 34(7): 863–875. DOI: https://doi.org/10.1080/02533839.2011.591915.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-jia Xue  (薛志佳).

Additional information

Foundation item

Project(41902280) supported by the National Natural Science Foundation of China; Project(300102219105) supported by the Fundamental Research Funds for the Central Universities, China; Project(LP1922) supported by the Open Foundation of State Key Laboratory of Coastal and Offshore Engineering, China; Project(XJKFJJ201805) supported by the Open Foundation of Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, China

Contributors

XUE Zhi-jia provided the concept and wrote the first draft of the manuscript. XIONG Qi conducted the literature review and edited the draft of manuscript.

Conflict of interest

XUE Zhi-jia and XIONG Qi declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Zj., Xiong, Q. Electro-osmotic chemical behavior of clayey soil under various boundary conditions. J. Cent. South Univ. 28, 1493–1504 (2021). https://doi.org/10.1007/s11771-021-4717-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4717-7

Key words

关键词

Navigation