Skip to main content

Advertisement

Log in

Facies, diagenesis and secondary porosity of a Miocene reefal platform of Central Luconia, Malaysia

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

Present studies focus the depositional and diagenetic processes controlling porosity of the middle to upper Miocene carbonates in Central Luconia, Malaysia. Secondary porosity has previously been linked to growth history, meteoric diagenesis, and burial diagenesis, with a few studies suggesting the possibility of diagenetic evolution driven by mixing zone or refluxing brines; but without conclusive evidence. The microfacies present in the studied succession were formed under varying tectonic and sea-level conditions. Data from seismic sections, cores, and thin sections show how the paragenetic sequences of the limestones and the dolomitic limestones were affected by the regional structural framework. During the critical period of the region history, an isolated coral/foraminiferal buildup (~ 600 m thick) was formed, in which the lower 300 m formed a megabank, extending laterally to ~ 5 km. The upper part reflects a dramatic tilting of the platform, with backstepping reducing its diameter to ~ 3 km. Five stratigraphic intervals are separated by boundaries marked by slightly argillaceous limestones. Interval 3 (1951–1893 m) is an ideal example of facies, porosity, permeability and diagenetic changes. The sequence is bounded by argillaceous limestone (Φ = 1%), with overlying mouldic limestone (Φ = 25%) to dolomitic limestone and dolomite (Φ = 30%). The best porosity and permeability is found in dolomite and dolomitic limestones, and which are typified by intercrystalline and vuggy porosity. The succession was subsequently influenced by at least four stages of calcite cementation and three stages of dolomitization, with a later stage of calcitization of the dolomite. These were punctuated by two stages marked by dissolution, minor compaction, and stylolitization. First, leaching of dominantly skeletal allochems (corals, mollucs), partial dolomitization (muddy fabric), and leaching near stylolites. The dissolution stages are not generally grain selective, and replaced all aragonite fragments and magnesium calcite to calcite and dolomite. Five different types of porosities are observed in EX, mouldic, vuggy, microporosity, intercrystalline and minor stylo-pores. Both the deposition and the diagenesis were controlled by tectonic events such as uplift, subsidence, tilting, and syn-sedimentary faulting, driving changes in relative sea level. Our reservoir-scale evaluation suggests that the substantial secondary porosity could form an appropriate reservoir for the long-term storage of CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abioui M, Ali SH, Kostyuchenko Y, Benssaou M (2020) Petar Milanović, Nikolay Maksimovich, and Olga Meshcheriakova: dams and reservoirs in evaporites. Carbonates Evapor 35(4):1–2

    Google Scholar 

  • Adams A, Diamond LW (2017) Early diagenesis driven by widespread meteoric infiltration of a Central European carbonate ramp: a reinterpretation of the Upper Muschelkalk. Sed Geol 362:37–52

    Article  Google Scholar 

  • Aigner T, Doyle M, Lawrence D, Epting M, Van Vliet A (1989) Quantitative modeling of carbonate platforms: some examples. In: Crevello PD, Wilson JF, Sarg JF, Read JF (eds) Controls on carbonate platform and basin development, vol 44. SEPM Special Publication, Broken Arrow, pp 27–37

    Chapter  Google Scholar 

  • Ali MY (1995) Carbonate cement stratigraphy and timing of diagenesis in a Miocene mixed carbonate-clastic sequence, offshore Sabah, Malaysia: constraints from cathodoluminescence, geochemistry, and isotope studies. Sed Geol 99(3–4):191–214. https://doi.org/10.1016/0037-0738(95)00044-9

    Article  Google Scholar 

  • Ali MY (2013) An integrated analysis of the depositional control, sedimentology and diagenesis of Cenozoic carbonates from the Sarawak Basin, East Malaysia. Dissertation, Imperial College London

  • Ali SH (2020) Sedimentology and diagenesis of miocene carbonate buildups, Offshore, Sarawak, Malaysia. PhD Thesis (Unpublished)

  • Ali MY, Abolins P (1999) Central luconia province. Petrol Geol Resour Malays 1:369–439

    Google Scholar 

  • Ali SH, Poppelreiter MC (2017) Quantitative diagenesis of a Miocene carbonate platform, Malaysia. In: Asia petroleum geoscience conference and exhibition, Kuala Lumpur, Malaysia, pp 1–5

  • Ali SH, Poppelreiter MC (2018) Semi-quantitative diagenetic approach on X-field, Offshore Sarawak, Malaysia. J Eng Appl Sci:36217-JEAS (accepted)

  • Ali SH, Poppelreiter MC, Saw BB, Schlaich M, Shah MM (2018a) Quantitative comparison of diagenesis in two miocene carbonate buildups, Central Luconia. Maximising carbonate asset values through collaboration and innovative solutions, Bintulu, Malaysia

  • Ali SH, Poppelreiter MC, Schlaich M, Saw BB, Mubin M, Rosli R (2018b) Sedimentological and diagenetic processes on miocene carbonates, a comparison of Proximal EX-buildup vs. distal JX mega platform, Central Luconia Province, offshore Sarawak. In: National Geoscience Conference 2018, Georgetown, Penang, Malaysia

  • Ali SH, Poppelreiter MC, Shah MM, Saw BB, Schlaich M (2018c) Diagenetic understandings based on quantitative data, Miocene Carbonate Buildup, Offshore Sarawak, Malaysia. Petrol Coal J 60(6):1275–1282

    Google Scholar 

  • Allan TL, Young MD, Peyaud J-B, Korsch MJ, Whitford DJ (2008) Strontium isotope stratigraphy of miocene reservoir limestones from the Central Luconia Province, Offshore Sarawak (unpublished)

  • Arosi HA, Wilson MEJ (2015) Diagenesis and fracturing of a large-scale, syntectonic carbonate platform. Sed Geol 326:9–134. https://doi.org/10.1016/j.sedgeo.2015.06.010

    Article  Google Scholar 

  • Back W, Hanshaw BB, Herman JS, Van Driel JN (1986) Differential dissolution of a Pleistocene reef in the ground-water mixing zone of coastal Yucatan, Mexico. Geology 14(2):137–140

    Article  Google Scholar 

  • Badiozamani K, Mackenzie FT, Thorstenson DC (1977) Experimental carbonate cementation; salinity, temperature and vadose-phreatic effects. J Sedim Res 47(2):529–542

    Google Scholar 

  • Bashir Y, Mohd Muztaza N, Moussavi Alashloo SY, Ali SH, Prasad Ghosh D (2020) Inspiration for seismic diffraction modelling, separation, and velocity in depth imaging. Appl Sci 10(12):4391

    Article  Google Scholar 

  • Bassant P, Van Buchem F, Strasser A, Lomando A (2004) A comparison of two Early Miocene carbonate margins: the Zhujiang Carbonate Platform (subsurface, South China Sea) and the Pirin Platform (outcrop, Southern Turkey)

  • Bathurst RG (1972) Carbonate sediments and their diagenesis

  • Bathurst RG (1980) Stromatactis—origin related to submarine-cemented crusts in Paleozoic mud mounds. Geology 8(3):131–134

    Article  Google Scholar 

  • Brachert TC, Vescogni A, Bosellini FR, Reuter M, Mertz-Kraus R (2007) High salinity variability during the early Messinian revealed by stable isotope signatures from vermetid and Halimeda reefs of the Mediterranean region. Geol Romana 40:51–66

    Google Scholar 

  • Briais A, Patriat P, Tapponnier P (1993) Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the Tertiary tectonics of Southeast Asia. J Geophys Res Solid Earth 98(B4):6299–6328

    Article  Google Scholar 

  • Budd DA (1997) Cenozoic dolomites of carbonate islands: their attributes and origin. Earth Sci Rev 42(1–2):1–47

    Article  Google Scholar 

  • Budd DA, Vacher HL (1991) Predicting the thickness of fresh-water lenses in carbonate paleo-islands. J Sedim Res 61(1):43–53

    Google Scholar 

  • Choquette PW, James NP (1987) Diagenesis# 12. Diagenesis in Limestones-3. The deep burial environment. Geosci Can 14(1)

  • Choquette PW, Pray LC (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bull 54(2):207–250

    Google Scholar 

  • Cullen A (2014) Reprint of: nature and significance of the West Baram and Tinjar Lines, NW Borneo. Mar Pet Geol 58:674–686

    Article  Google Scholar 

  • Dill MA, Seyrafian A, Vaziri-Moghaddam H (2010) The Asmari Formation, north of the Gachsaran (Dill anticline), southwest Iran: facies analysis, depositional environments and sequence stratigraphy. Carbon Evapor 25(2):145–160

    Article  Google Scholar 

  • Dill MA, Vaziri-Moghaddam H, Seyrafian A, Behdad A (2018) Oligo-Miocene carbonate platform evolution in the northern margin of the Asmari intra-shelf basin, SW Iran. Mar Pet Geol 92:437–461

    Article  Google Scholar 

  • Doust H (1981) Geology and exploration history of offshore central Sarawak. SG 12: Energy Resources of the Pacific Region, pp 117–132

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional textures

  • Ehrenberg SN, McArthur JM, Thirlwall MF (2006) Growth, demise, and dolomitization of Miocene carbonate platforms on the Marion Plateau, offshore NE Australia. J Sedim Res 76(1):91–116

    Article  Google Scholar 

  • Embry AF III, Klovan JE (1971) A late Devonian reef tract on north-eastern Banks Island. NWT Bull Can Petrol Geol 19(4):730–781

    Google Scholar 

  • Epting M (1980) Sedimentology of miocene carbonate buildups, Central Luconia, Offshore Sarawak. Geol Soc Malays Bull 12:17–30. https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  • Epting M (1987) Active margin: miocene carbonate buildups of Central Luconia, Offshore Sarawak. In: AAPG studies in geology #27, volume 3: Atlas of Seismic Stratigraphy, edited by Bally AW, pp 168–173

  • Epting M (1989) The Miocene carbonate buildups of central Luconia, offshore Sarawak. In: Bally AW (ed) Atlas of seismic stratigraphy, AAPG (Tulsa). Studies in Geology, pp 168–173

  • Esteban M, Taberner C (2003) Secondary porosity development during late burial in carbonate reservoirs as a result of mixing and/or cooling of brines. J Geochem Explor 1(78):355–359

    Article  Google Scholar 

  • Flügel E (1982) Microfacies analysis of limestones. Springer, New York

    Book  Google Scholar 

  • Flügel E (2004) Microfacies of carbonate rocks: analysis, interpretation and application. Springer, Germany

    Book  Google Scholar 

  • Folk RL, Land LS (1975) Mg/Ca ratio and salinity: two controls over crystallization of dolomite. AAPG Bull 59(1):60–68

    Google Scholar 

  • Forte GL, Palma RM (2002) Facies, microfacies, and diagenesis of late Callovian-early Oxfordian carbonates (La Manga Formation) in the west central Argentinean high andes. Carbonates Evaporites 17(1):1–6

    Article  Google Scholar 

  • Fournier F, Borgomano J, Montaggioni LF (2005) Development patterns and controlling factors of Tertiary carbonate buildups: Insights from high-resolution 3D seismic and well data in the Malampaya gas field (Offshore Palawan, Philippines). Sed Geol 175(1–4):189–215

    Article  Google Scholar 

  • Franke D, Savva D, Pubellier M, Steuer S, Mouly B, Auxietre JL, Meresse F, Chamot-Rooke N (2014) The final rifting evolution in the South China Sea. Mar Pet Geol 58:704–720

    Article  Google Scholar 

  • Gartner GLB, Schlager W, Adams EW (2004) Seismic expression of the boundaries of a Miocene carbonate platform, Sarawak, Malaysia. In: Eberli GP, Masaferro JL, Rick Sarg JF (eds) Seismic imaging of carbonate reservoirs and systems, vol 81. AAPG Memoir, pp 351–365

  • Hanshaw BB, Back W (1980) Chemical mass-wasting of the northern Yucatan Peninsula by groundwater dissolution. Geology 8(5):222–224

    Article  Google Scholar 

  • Harris N (2006) The elevation history of the Tibetan Plateau and 648 its implications for the Asian monsoon. Palaeogeogr Palaeoclimatol Palaeoecol 241(1):4–15

    Article  Google Scholar 

  • Hassan MHA, Johnson HD, Allison PA, Abdullah WH (2017) Sedimentology and stratigraphic architecture of a Miocene retrogradational, tide-dominated delta system: Balingian Province, offshore Sarawak, Malaysia. Geol Soc Lond Spec Publ 444(1):215–250

    Article  Google Scholar 

  • Hoces SO (2010) Controls on isolated carbonate platform evolution and demise, Central Luconia province, South China Sea. Dissertation, Texas A & M University

  • Iqbal MA, Salim AMA, Siddiqui NA, Baioumy H, Ali SH (2017) Petrographic investigations and reservoir potential of shallow marine sandstone: a case study from Nyalau formation, Sarawak Basin, Malaysia. ARPN J Eng Appl Sci 12(22):6255–6264

    Google Scholar 

  • Iqbal MA, Salim AMA, Baioumy H, Gaafar GR, Wahid A (2019) Identification and characterization of low resistivity low contrast zones in a clastic outcrop from Sarawak, Malaysia. J Appl Geophys 160:207–217

    Article  Google Scholar 

  • Ishaq M, Jan IU, Hanif M, Awais M (2019) Microfacies and diagenetic studies of the early Eocene Sakesar Limestone, Potwar Plateau, Pakistan: approach of reservoir evaluation using outcrop analogue. Carbonates Evaporites 34(3):623–656

    Article  Google Scholar 

  • Jamalian M, Adabi MH (2015) Geochemistry, microfacies and diagenetic evidences for original aragonite mineralogy and open diagenetic system of lower cretaceous carbonates Fahliyan Formation (Kuh-e Siah area, Zagros Basin, South Iran). Carbonates Evaporites 30(1):77–98

    Article  Google Scholar 

  • Jamaludin SNF, Pubellier M, Menier D (2014) Relationship between syn-depositional faulting and carbonate growth in Central Luconia Province, Malaysia. Geol Soc Malays Bull 60:77–83

    Article  Google Scholar 

  • Jamaludin SNF, Pubellier M, Menier D (2018) Structural restoration of carbonate platform in the southern part of Central Luconia, Malaysia. J Earth Sci 29(1):155–168

    Article  Google Scholar 

  • James NP (1983) Reef environment. In: Scholle PA, Bebout DG, Moore CH (eds) Carbonate depositional environments, vol 31. American Association of Petroleum Geologists, Tulsa, pp 346–440

    Google Scholar 

  • James NP, Choquette PW (1990) Limestones the meteoric diagenetic environment. Diagenesis. Geosci Can Reprint Ser 4:35–73

    Google Scholar 

  • Janiszewska K, Mazur M, Machalski M, Stolarski J (2018) From pristine aragonite to blocky calcite: Exceptional preservation and diagenesis of cephalopod nacre in porous Cretaceous limestones. PLoS ONE 13(12):e0208598

    Article  Google Scholar 

  • Janjuhah HT, Vintaned JAG, Salim AMA, Faye I, Shah MM, Ghosh DP (2017) Microfacies and depositional environments of Miocene isolated carbonate platforms from Central Luconia, Offshore Sarawak, Malaysia. Acta Geol Sin English Ed 91(5):1778–1796

    Article  Google Scholar 

  • Koša E (2015) Sea-level changes, shoreline journeys, and the seismic stratigraphy of Central Luconia, Miocene present, offshore Sarawak, NW Borneo. Mar Pet Geol 59:35–55

    Article  Google Scholar 

  • Koša E, Warrlich GM, Loftus G (2015) Wings, mushrooms, and Christmas trees: the carbonate seismic geomorphology of Central Luconia, Miocene–present, offshore Sarawak, northwest Borneo. AAPG Bull 99(11):2043–2075

    Article  Google Scholar 

  • Land LS, Hoops GK (1973) Sodium in carbonate sediments and rocks; a possible index to the salinity of diagenetic solutions. J Sediment Res 43(3):614–617

    Google Scholar 

  • Liu N, Wang ZF, Li XS, Liu L, Zhang DJ, You L, Luo W, Liu XY (2019) Reef-carbonate diagenesis in the Pleistocene-Holocene of the well Xike# 1, Xisha Islands, South China Sea: implications on sea-level changes. Carbon Evapor 34(4):1669–1687

    Article  Google Scholar 

  • Longman MW (1980) Carbonate diagenetic textures from near surface diagenetic environments. Am Assoc Pet Geol Bull:64

  • Lunt P, Madon M (2017) A review of the Sarawak cycles: history and modern application. Geol Soc Malaysia Bull 63:77–101

    Article  Google Scholar 

  • Luo X, Kwok KL, Liu Y, Jiao J (2017) A permanent multilevel monitoring and sampling system in the coastal groundwater mixing zones. Groundwater 55(4):577–587

    Article  Google Scholar 

  • Madden RHC, Wilson MEJ (2012) Diagenesis of Neogene delta-front patch reefs: alteration of coastal, siliciclastic-influenced carbonates from humid equatorial regions. J Sediment Res 82(11):871–888. https://doi.org/10.2110/jsr.2012.26

    Article  Google Scholar 

  • Madden RHC, Wilson MEJ (2013) Diagenesis of a SE Asian Cenozoic carbonate platform margin and its adjacent basinal deposits. Sed Geol 286–287:20–38. https://doi.org/10.1016/j.sedgeo.2012.11.006

    Article  Google Scholar 

  • Madden RH, Wilson ME, O’Shea M (2013) Modern fringing reef carbonates from equatorial SE Asia: an integrated environmental, sediment and satellite characterisation study. Mar Geol 344:163–185

    Article  Google Scholar 

  • Madon M, Kim CL, Wong R (2013) The structure and stratigraphy of deepwater Sarawak, Malaysia: implications for tectonic evolution. J Asian Earth Sci 76:312–333

    Article  Google Scholar 

  • Mathew MJ, Siddiqui NA, Menier D (2014) An evolutionary model of the Nearshore 701 Tinjar and Balingian Provinces, Sarawak, Malaysia. Int J Petrol Geosci Eng 2(1):81–91

    Google Scholar 

  • Mathew MJ, Menier D, Siddiqui NA, Kumar S, Authemayou C (2016a) Active tectonic deformation along rejuvenated faults in tropical Borneo: inferences obtained from tectono-geomorphic evaluation. Geomorphology 267:1–15

    Article  Google Scholar 

  • Mathew MJ, Menier D, Siddiqui NA, Ramkumar M, Santosh M, Kumar S, Hassaan M (2016b) Drainage basin and topographic analysis of a tropical landscape: insights into surface and tectonic processes in northern Borneo. J Asian Earth Sci 124:14–27

    Article  Google Scholar 

  • Mazzullo SJ, Chilingarian GV (1992) Diagenesis and origin of porosity. Dev Pet Sci 30:199–270

    Google Scholar 

  • Mazzullo SJ, Harris PM (1992) Mesogenetic dissolution: its role in porosity development in carbonate reservoirs (1). AAPG Bull 76(5):607–620

    Google Scholar 

  • Menier D, Pierson B, Chalabi A, Ting KK, Pubellier M (2014) Morphological indicators of structural control, relative sea-level fluctuations and platform drowning on present-day and Miocene carbonate platforms. Mar Pet Geol 58:776–788

    Article  Google Scholar 

  • Menier D, Mathew MJ, Pubellier M, Sapin F, Delcaillau B, Siddiqui NA, Ramkumar M, Santosh M (2017) Landscape response to progressive tectonic and climatic forcing in NW Borneo: Implications for geological and geomorphic controls on flood hazard. Nat Sci Rep 7:457

    Google Scholar 

  • Miao Y, Fang X, Herrmann M, Wu F, Zhang Y, Liu D (2011) Miocene pollen record of KC-1 core in the Qaidam Basin, NE Tibetan Plateau and implications for evolution of the East Asian monsoon. Palaeogeogr Palaeoclimatol Palaeoecol 299(1–2):30–38

    Article  Google Scholar 

  • Moore C (1989) Carbonate diagenesis and porosity. Elsevier

    Google Scholar 

  • Morley CK (2003) Mobile shale related deformation in large deltas developed on passive and active margins. Geol Soc Lond Spec Publ 216(1):335–357

    Article  Google Scholar 

  • Morley CK (2016) Major unconformities/termination of extension events and associated surfaces in the South China Seas: review and implications for tectonic development. J Asian Earth Sci 120:62–86

    Article  Google Scholar 

  • Mueller M, Igbokwe OA, Walter B, Pederson CL, Riechelmann S, Richter DK, Albert R, Gerdes A, Buhl D, Neuser RD, Bertotti G (2020) Testing the preservation potential of early diagenetic dolomites as geochemical archives. Sedimentology 67(2):849–881

    Article  Google Scholar 

  • Mylroie JE, Carew JL (1990) The flank margin model for dissolution cave development in carbonate platforms. Earth Surf Proc Land 15(5):413–424

    Article  Google Scholar 

  • Paterson RJ, Whitaker FF, Jones GD, Smart PL, Waltham D, Felce G (2006) Accommodation and sedimentary architecture of isolated icehouse carbonate platforms: insights from forward modeling with CARB3D+. J Sediment Res 76(10):1162–1182

    Article  Google Scholar 

  • Plummer LN (1975) Mixing of sea water with calcium carbonate ground water. Geol Soc Am Mem 142:219–236

    Google Scholar 

  • Rankey EC, Schlaich M, Mokhtar S, Ghon G, Ali SH, Poppelreiter M (2019) Seismic architecture of a Miocene isolated carbonate platform and associated off-platform strata (Central Luconia province, offshore Malaysia). Mar Pet Geol 102:477–495

    Article  Google Scholar 

  • Rulliyansyah (2011) Dolomitization in miocene carbonate platforms of Central Luconia, Sarawak: character, origin, and impact on reservoir properties. Maters Thesis, Universiti Teknologi Petronas

  • Ryan BH, Kaczmarek SE, Rivers JM (2020) Early and pervasive dolomitization by near-normal marine fluids: new lessons from an Eocene evaporative setting in Qatar. Sedimentology 67(6):2917–2944

    Google Scholar 

  • Sadooni FN, Alsharhan AS (2019) Regional stratigraphy, facies distribution, and hydrocarbons potential of the Oligocene strata across the Arabian Plate and Western Iran. Carbonates Evaporites 34(4):1757–1770

    Article  Google Scholar 

  • Saller AH, Vijaya S (2002) Depositional and diagenetic history of the Kerendan carbonate platform, Oligocene, central Kalimantan, Indonesia. J Petrol Geol 25(2):123–149

    Article  Google Scholar 

  • Sattler U, Immenhauser A, Schlager W, Zampetti V (2009) Drowning history of a Miocene carbonate platform (Zhujiang Formation, South China Sea). Sed Geol 219(1–4):318–331

    Article  Google Scholar 

  • Saw BB, Schlaich M, Poppelreiter MC, Ramkumar M, Lunt P, Vintaned JAG, Ali SH (2019) Facies, depositional environments and anatomy of the Subis Build-up in Sarawak, Malaysia: implications on other Miocene, isolated carbonate build-ups. Facies J (accepted)

  • Scholle PA, Halley RB (1985) Burial diagenesis: out of sight, out of mind!. SEPM 36

  • Seyrafian A (1998) Petrofacies analysis and depositional environment of the Jahrum Formation (Eocene), south-southwest of Burujen. Iran. Carbonates Evaporites 13(1):90

    Article  Google Scholar 

  • Shah MM, Ahmed W, Ahsan N, Lisa M (2016) Fault-controlled, bedding-parallel dolomite in the middle Jurassic Samana Suk Formation in Margalla Hill Ranges, Khanpur area (North Pakistan): petrography, geochemistry, and petrophysical characteristics. Arab J Geosci 9(5):405

    Article  Google Scholar 

  • Shoukat N, Siddiqui NA, Rahman AH, Ali SH (2019) Sedimentology and depositional environments of the early Miocene Nyalau Formation, Bintulu Area, Sarawak, Malaysia. Petrol Coal 1:61(5)

  • Shuster AM, Wallace MW, van Smeerdijk HA, Jiang G (2018) The Tonian Beck Spring Dolomite: marine dolomitization in a shallow, anoxic sea. Sed Geol 368:83–104

    Article  Google Scholar 

  • Sibley DF, Gregg JM (1987) Classification of dolomite rock textures. J Sediment Res 57(6):967–975

    Google Scholar 

  • Siddiqui NA, Rahman AHA, Sum CW, Mathew MJ, Menier D (2014) Facies characteristics and static reservoir connectivity of some siliciclastic tertiary outcrop succession in Bintulu & Miri, Sarawak, East Malaysia. AAPG Search Discov:51035

  • Siddiqui NA, Rahman AHA, Sum CW, Mathew MJ, Menier D (2015) Modeling of littroral sandstones reveal variance in reservoir flow patterns: an example from Nyalau formation, East Malaysia. Res J Appl Sci Eng Technol 11(2):176–184

    Article  Google Scholar 

  • Siddiqui NA, Rahman AHA, Sum CW, Mathew MJ, Menier D (2016) Onshore sandstone facies characteristics and reservoir quality of Nyalau Formation, Sarawak, East Malaysia: an analogue to subsurface reservoir quality evaluation. Arab J Sci Eng 41(1):267–280

    Article  Google Scholar 

  • Siddiqui NA, Rahman AHA, Sum CW, Mathew MJ, Menier D (2017) Generic hierarchy of sandstone facies quality and static connectivity: an example form the Miri Formations, Sarawak, East Malaysia. Arab J Geosci 10(11):1–21

    Article  Google Scholar 

  • Siddiqui NA, Ramkumar M, Mathew MJ, Rahman AHA, Santosh M, Sum CW, Menier D (2018) High resolution facies architecture and digital outcrop modeling of the Sandakan Formation, Borneo: implications for reservoir characterization and flow simulation. Geosci Front (in press)

  • Sun SQ, Esteban M (1994) Paleoclimatic controls on sedimentation, diagenesis, and reservoir quality: lessons from Miocene carbonates. AAPG Bull 78(4):519–543

    Google Scholar 

  • Swennen R, Dewit J, Fierens E, Muchez P, Shah M, Nader F, Hunt D (2012) Multiple dolomitization events along the Pozalagua Fault (Pozalagua Quarry, Basque-Cantabrian Basin, Northern Spain). Sedimentology 59(4):1345–1374

    Article  Google Scholar 

  • Tarkowski R (2019) Underground hydrogen storage: characteristics and prospects. Renew Sustain Energy Rev 105:86–94

    Article  Google Scholar 

  • Taylor B, Hayes D E (1983) Origin and history of the South China Sea basin. In: The tectonic and geologic evolution of Southeast Asian seas and islands Part 2, vol 27, pp 23–56

  • Ting KK, Pierson BJ, Al-Jaadi O, Hague PF (2011) Effects of syn-depositional tectonics on platform geometry and reservoir characters in Miocene carbonate platforms of Central Luconia, Sarawak. In: International Petroleum Technology Conference

  • Tjia HD (2012) The Paleo-orientations of Northwestern Borneo and adjacent South China Sea basins. Indones J Geosci 7(2):67–76

    Article  Google Scholar 

  • Vahrenkamp VC (1998) Miocene carbonates of the Luconia province, offshore Sarawak: Implications for regional geology and reservoir properties from strontium-isotope stratigraphy. Bull Geol Soc Malays 42:1–13

    Article  Google Scholar 

  • Vahrenkamp VC, David F, Duijndam P, Newall, M, Crevello P (2004) Growth architecture, faulting, and karstification of a middle Miocene carbonate platform, Luconia Province, offshore Sarawak, Malaysia

  • Warrlich GE, Taberner CO, Asyee WE, Stephenson B, Esteban MA, Boya-Ferrero MA, Dombrowski AN, Van Konijnenburg JH (2010) The impact of postdepositional processes on reservoir properties: two case studies of Tertiary carbonate buildup gas fields in Southeast Asia (Malampaya and E11). SEPM Soc Sediment Geol Cenozoic Carbon Syst Austral 95:99–127

    Google Scholar 

  • Whitaker FF, Smart PL (1990) Active circulation of saline ground waters in carbonate platforms: evidence from the Great Bahama Bank. Geology 18(3):200–203

    Article  Google Scholar 

  • Wilson JL (1975) Carbonate facies in geologic history. Springer, New York

    Book  Google Scholar 

  • Wilson MEJ (2002) Cenozoic carbonates in Southeast Asia: implications for equatorial carbonate development. Sed Geol 147(3–4):295–428. https://doi.org/10.1016/S0037-0738(01)00228-7

    Article  Google Scholar 

  • Wilson MEJ (2005) Development of equatorial delta-front patch reefs during the Neogene. Borneo J Sediment Res 75(1):114–133. https://doi.org/10.2110/jsr.2005.010

    Article  Google Scholar 

  • Wilson JL (2012) Carbonate facies in geologic history. Springer, New York

    Google Scholar 

  • Wilson MEJ (2012) Equatorial carbonates: an earth systems approach. Sedimentology 59(1):1–31. https://doi.org/10.1111/j.1365-3091.2011.01293.x

    Article  Google Scholar 

  • Wilson MEJ, Hall R (2010) Tectonic influences on se Asian carbonate systems and their reservoir development. Soc Sediment Geol 95(95):14–40

    Google Scholar 

  • Wilson MEJ, Hall R, Morgan WA, George AD, Harris PM, Kupecz JA, Sarg JF (2010) Tectonic influences on SE Asian carbonate systems and their reservoir development. Cenozoic Carbon Syst Austral SEPM Spec Publ 95:13–40

    Google Scholar 

  • Wilson MEJ, Lewis D, Holland D, Hombo L, Goldberg A (2013a) Development of a Papua New Guinean onshore carbonate reservoir: a comparative borehole image (FMI) and petrographic evaluation. Mar Pet Geol 44:164–195

    Article  Google Scholar 

  • Wilson MEJ, Wah ECE, Dorobek S, Lunt P (2013b) Onshore to offshore trends in carbonate sequence development, diagenesis and reservoir quality across a land-attached shelf in SE Asia. Mar Pet Geol 45:349–376

    Article  Google Scholar 

  • Wright VP, Tucker ME (1990) Carbonate sedimentology. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Yang L, Yu L, Chen D, Liu K, Yang P, Li X (2020) Effects of dolomitization on porosity during various sedimentation-diagenesis processes in carbonate reservoirs. Minerals 10(6):574

    Article  Google Scholar 

  • Zampetti V, Schlager W, van Konijnenburg JH, Everts AJ (2003) Depositional history and origin of porosity in a Miocene carbonate platform of Central Luconia, offshore Sarawak. Geol Soc Malays Bull 47:139–152

    Article  Google Scholar 

  • Zampetti V, Schlager W, van Konijnenburg JH, Everts AJ (2004) Architecture and growth history of a Miocene carbonate platform from 3D seismic reflection data; Luconia province, offshore Sarawak, Malaysia. Mar Petrol Geol 21(5):517–534

    Article  Google Scholar 

  • Ziegler MA (2001) Late Permian to Holocene paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences. GeoArabia 6(3):445–504

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support offered by the Department of Geosciences, Universiti Teknologi PETRONAS, Malaysia; PETRONAS Carigali, Malaysia; Petronas Geo-Sample Center (PGSC), Malaysia. The authors gratefully thank Dr. Manoj Mathew for the structural interpretation and conceiving the conceptual model that critically refined the scientific content of the manuscript. We thank Professor James W. LaMoreaux (Editor-in-Chief, Carbonate and Evaporites), anonymous reviewers, who provided critical helpful comments and suggestions to our manuscript. The authors are much obliged to the Springer proofreading team for handling the work, sending reviews, and preparing the proof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Haroon Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.H., Poppelreiter, M.C., Saw, B.B. et al. Facies, diagenesis and secondary porosity of a Miocene reefal platform of Central Luconia, Malaysia. Carbonates Evaporites 36, 44 (2021). https://doi.org/10.1007/s13146-021-00682-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-021-00682-0

Keywords

Navigation