Skip to main content
Log in

Modeling and simulation of temperature nano-probes for nano-devices with variable powers

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The shape of the temperature nano-probes is a significant factor to evaluate the temperature measurement accuracy in the nanoscale temperature detection. Based on the finite element numerical simulation method, the temperature nano-probe model is established for nano-devices with variable powers. The temperature nano-probes with different shapes of sphere, rod, tube and disk are designed and studied. It is found that the heat transfer process between the nano-device and the temperature nano-probes is affected by the shape of nano-probes. Additionally it is dependent on the size of the device and the gap distance between the nano-device and nano-probes. The high stability and accuracy in the temperature measurement process is obtained in case of the nano-probe with the shape of nano-disk. The temperature error can be minimized through controlling the side length of the disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Samson B, Aigouy L, Löw P, Bergaud C, Kim B J, Mortier M et al 2008 Appl. Phys. Lett. 92 023101

    Article  Google Scholar 

  2. Lee J and Kotov N A 2007 Nano Today 2 48

    Article  Google Scholar 

  3. Brites C D, Lima P P, Silva N J, Millán A, Amaral V S, Palacio F et al 2010 Adv. Mater. 22 4499

    Article  CAS  Google Scholar 

  4. Yue Y and Wang X 2012 Nano Rev. 3 11586

    Article  Google Scholar 

  5. Bahmani B, Bacon D and Anvari B 2013 Sci. Rep. 3 1

    Article  Google Scholar 

  6. Guo J, Wang X and Wang T 2007 J. Appl. Phys. 101 063537

    Article  Google Scholar 

  7. Spiece J, Evangeli C, Lulla K, Robson A, Robinson B, Kolosov O et al 2018 J. Appl. Phys. 124 015101

    Article  Google Scholar 

  8. Majumdar A 1999 Annu. Rev. Mater. Sci. 29 505

    Article  CAS  Google Scholar 

  9. Gomès S, Assy A and Chapuis P O 2015 Phys. Status Solidi A 212 477

    Article  Google Scholar 

  10. Christofferson J, Maize K, Ezzahri Y, Shabani J, Wang X and Shakouri A 2008 J. Electron. Packag. 130 041101

    Article  Google Scholar 

  11. Kim K, Jeong W, Lee W and Reddy P 2012 ACS Nano 6 4248

    Article  CAS  Google Scholar 

  12. Menges F, Mensch P, Schmid H, Riel H, Stemmer A and Gotsmann B 2016 Nat. Commun. 1 1

    Google Scholar 

  13. Hammiche A, Pollock H M, Song M and Hourston D J 1996 Meas. Sci. Technol. 7 142

    Article  CAS  Google Scholar 

  14. Kittel A, Müller-Hirsch W, Parisi J, Biehs S-A, Reddig D and Holthaus M 2005 Phys. Rev. Lett. 95 224301

    Article  Google Scholar 

  15. Tovee P, Pumarol M, Zeze D, Kjoller K and Kolosov O 2012 J. Appl. Phys. 112 114317

    Article  Google Scholar 

  16. Shi L and Majumdar A 2002 J. Heat Transfer 124 329

    Article  CAS  Google Scholar 

  17. Park K, Cross G L, Zhang Z M and King W P 2008 J. Heat Transfer 130 102401

    Article  Google Scholar 

  18. Chapuis P O, Greffet J J, Joulain K and Volz S 2006 Nanotechnology 17 2978

    Article  CAS  Google Scholar 

  19. Raeisi-Fard H, Becker N, Hess A, Pashayi K, Proslier T, Pellin M et al 2013 Appl. Phys. Lett. 103 193109

    Article  Google Scholar 

  20. Wang J, Wang M and Li Z 2007 Int. J. Therm. Sci. 46 228

    Article  CAS  Google Scholar 

  21. Shanks H R, Maycock P D, Sidles P H and Danielson G C 1963 Phys. Rev. 130 1743

    Article  CAS  Google Scholar 

  22. Rhim W K and Ohsaka K 2000 J. Cryst. Growth 208 313

    Article  CAS  Google Scholar 

  23. Wilson A A and Borca-Tasciuc T 2017 Rev. Sci. Instrum. 88 074903

    Article  Google Scholar 

  24. Mecklenburg M, Hubbard W A, White E R, Dhall R, Cronin S B, Aloni S et al 2015 Science 347 629

    Article  CAS  Google Scholar 

  25. Klein P H and Croft W J 1967 J. Appl. Phys. 38 1603

    Article  CAS  Google Scholar 

  26. Aggarwal R L, Ripin D J, Ochoa J R and Fan T Y 2005 in Solid state lasers XIV: technology and devices (International Society for Optics and Photonics) p 165

  27. Pollnau M, Hardman P J, Kern M A, Clarkson W A and Hanna D C 1998 Phys. Rev. B 58 16076

    Article  CAS  Google Scholar 

  28. Ahmadi A, Avazpour A, Nadgaran H and Mousavi M 2018 Laser Phys. 28 105002

    Article  Google Scholar 

  29. Bai Z A, Fan Z W, Bai Z X, Lian F Q, Kang Z J, Lin W R et al 2015 Appl. Sci. 5 359

    Article  Google Scholar 

  30. Huang Z, Feng J and Pan W 2012 J. Solid State Chem. 185 42

    Article  CAS  Google Scholar 

  31. Mamedov B A, Eser E, Koç H and Askerov I M 2009 Int. J. Thermophys. 30 1048

    Article  CAS  Google Scholar 

  32. Florescu D I, Mourokh L G, Pollak F H, Look D C, Cantwell G, Li X et al 2002 J. Appl. Phys. 91 890

    Article  CAS  Google Scholar 

  33. Jeong J, Li C, Kwon Y, Lee J, Kim S H, Yun R et al 2013 Int. J. Refrig. 36 2233

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Jiangsu Natural Science Foundation for Excellent Young Scholar (BK20170101), the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (NY220011, NY220034), and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (SJCX19_0270).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangfu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Cui, Y., Wang, X. et al. Modeling and simulation of temperature nano-probes for nano-devices with variable powers. Bull Mater Sci 44, 193 (2021). https://doi.org/10.1007/s12034-021-02483-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02483-6

Keywords

Navigation