Skip to main content
Log in

Mechanical properties of MWCNTs and graphene nanoparticles modified glass fibre-reinforced polymer nanocomposite

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In the present study, the multi-walled carbon nanotubes (MWCNTs) and graphene nanoparticles were used as a reinforcement to fabricate glass fibre polymer composite at different orientations (unidirectional glass fibres 0° and 90°; woven glass fibres 0°/90° and 45°/45°). The composites were developed using hand lay-up-assisted vacuum bagging method at 1 torr pressure. The concentrations of nanoparticles (~diameter 5–20 nm) were varied in the range of 0.1–0.3 wt% in the matrix. The mechanical properties like impact strength, tensile strength and fatigue strength were carried out on Izod and Charpy machine, universal testing machine and computer-controlled machine under sinusoidal wave, respectively. It is observed that the glass fibre/epoxy composite blended with MWCNTs/graphene by 0.2 wt% has shown higher fatigue life by 56%, higher tensile strength by 36% and higher capability of energy absorption by 927.7% in notched type and lower capability of energy absorption by 155.43% in un-notched type, as compared to pure composite. The increment in properties is due to the better bonding between fillers and matrix. However, the increase of MWCNTs and graphene nanoparticles by wt% in composite laminates have shown lower fatigue strength because of the agglomeration of MWCNTs particles in matrix that caused the propagation of fatigue cracks under cyclic loading. Further, the damage behaviour of composite materials was analysed using scanning electron microscopy. It is found that a different damage behaviour in each composite is observed which is attributed to the matrix cracking, fibre rupture, fibre pullout, fibre split and fibre de-bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Srivasta V K and Pathak J P 1996 Wear 197 145

    Article  Google Scholar 

  2. Sutherland L S and Soares C G 2005 Compos. Struct. 68 13

    Article  Google Scholar 

  3. Evci C and Gulgec M 2012 Int. J. Impact Eng. 43 40

    Article  Google Scholar 

  4. Sutherland L S, Soares C G and Guecdes C 2005 Int. J. Impact Eng. 33 1

    Article  Google Scholar 

  5. Mitreveski T, Marshall I H and Thomsan R 2006 Compos. Struct. 76 116

    Article  Google Scholar 

  6. Arifin A M T, Abdullah S, Rafiquzzaman M D, Zulkifli R, Wahab D A and Arifin A K 2014 Mater. Des. 59 475

    Article  CAS  Google Scholar 

  7. Feng D and Aymerich F 2014 Compos. Struct. 108 161

    Article  Google Scholar 

  8. Long S, Yao X and Zhang X 2015 Compos. Struct. 132 290

    Article  Google Scholar 

  9. Sharma S P and Lakkad S C 2014 Compos. Part A: Appl. Sci. Manuf. 69 124

    Article  CAS  Google Scholar 

  10. Tehrani M, Boroujeni A Y, Hartman T B and Haugh T P 2013 Compos. Sci. Technol. 75 42

    Article  CAS  Google Scholar 

  11. Hufenbach W, Ibraim F M, Langkamp A and Böhm R 2008 Compos. Sci. Technol. 68 2391

    Article  CAS  Google Scholar 

  12. Kostopoulos V, Baltopoulos A, Karapappas P, Vavouliotis A and Paipetis A 2009 Compos. Sci. Technol. 70 553

    Article  Google Scholar 

  13. Sadasivam B and Mallick P K 2002 J. Thermoplast. Compos. Mater. 15 181

    Article  Google Scholar 

  14. Caprino G, Lopresto V, Scarponi C and Briotti G 1999 Compos. Sci. Technol. 59 2279

  15. Hosur M V, Adbullah M and Jeelani S 2005 Compos. Struct. 67 253

    Article  Google Scholar 

  16. Ferreira J A M, Borrego L P, Costa J D M and Capela C 2013 Compos. Part B: Eng. 52 286

    Article  CAS  Google Scholar 

  17. Borrego L P, Costa J D M, Ferreira J A M and Silva H 2014 Compos. Part B: Eng. 62 65

    Article  CAS  Google Scholar 

  18. Böger L, Sumfleth J, Hedemann H and Schulte K 2010 Compos. Part A: Appl. Sci. Manuf. 4 1419

    Article  Google Scholar 

  19. Knoll J B, Riedkena B T, Kosmanna N, Chandrasekaran S, Schulte K and Fiedler B 2014 Compos. Part A: Appl. Sci. Manuf. 67 233

    Article  CAS  Google Scholar 

  20. Fathy A, Shaker A, Hamid M A and Megahed A A 2016 J. Compos. Mater. 51 1667

    Article  Google Scholar 

  21. Jagannathan N, Anilchandra A R and Manjunatha C M 2016 Nanocomposites 1 138

    Article  Google Scholar 

  22. Bourchak M, Algarni A, Khan A and Khashaba U 2018 Compos. Sci. Technol. 167 164

    Article  CAS  Google Scholar 

  23. Kumar S, Singh K and Ramkumar J 2020 Proc. Inst. Mech. Eng. J. https://doi.org/10.1177/1350650120965756

  24. Sharma S, Rawal J, Dhakate S R and Singh B P 2020 Compos. Sci. Technol. 199 108370

    Article  CAS  Google Scholar 

  25. Ravindran L, Sreekala M, Anilkumar S and Thomas S 2020 J. Compos. Mater. https://doi.org/10.1177/0021998320964263

    Article  Google Scholar 

  26. Kim J, Cha J, Chung B, Ryu S and Hong S H 2020 Compos. Sci. Technol. 192 108101

    Article  CAS  Google Scholar 

  27. Cheon S S, Lim T S and Lee D G 2000 Compos. Struct. 50 381

    Article  Google Scholar 

  28. Rassmann S, Paskaramoorthy R and Reid R G 2011 Mater. Des. 32 1399

    Article  CAS  Google Scholar 

  29. Ribeiro M L, Tita V and Vandepitte D 2012 Compos. Struct. 94 635

    Article  Google Scholar 

  30. Ude A U, Ariffin A K and Azhari C H 2013 Int. J. Impact Eng. 58 31

    Article  Google Scholar 

  31. Bellemare S C, Bureau M N, Denault J and Dickson J 2004 Polym. Compos. 25 433

    Article  CAS  Google Scholar 

  32. Lam C K, Cheung H Y, Lau K T, Zhou L M, Ho M W and David H D 2005 Compos. Part B: Eng. 36 263

    Article  Google Scholar 

  33. Srivastava I and Koratkar N 2010 J. Mater. 62 50

    CAS  Google Scholar 

  34. Zhou Y, Pervin F, Jeelani S and Mallick P K 2008 J. Mater. Process. Technol. 198 445

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Composite Technology Centre Laboratory, Department of Aerospace Engineering, Indian Institute of Technology Madras, and Tirven Industries Pvt. Ltd., Hyderabad, for the research activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JITENDRA KUMAR KATIYAR.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

TURAKA, S., REDDY, K.V.K., SAHU, R.K. et al. Mechanical properties of MWCNTs and graphene nanoparticles modified glass fibre-reinforced polymer nanocomposite. Bull Mater Sci 44, 194 (2021). https://doi.org/10.1007/s12034-021-02444-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02444-z

Keywords

Navigation