Skip to main content

Advertisement

Log in

The effect of sodium chloride and temperature on the levels of transcriptional expression of staphylococcal enterotoxin genes in Staphylococcus aureus isolates from broiler carcasses

  • Food Microbiology - Short Communication
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Staphylococcus aureus is one of the most common pathogens associated with food poisoning, which is caused by the ingestion of food contaminated with staphylococcal enterotoxins (SE). Our study aims at evaluating the occurrence and expression of five SE genes (sea, seb, sec, sed, and see) in S. aureus previously isolated from broiler carcasses. Besides that, it also presents an in vitro analysis of the effects of sodium chloride and temperature on the levels of transcriptional expression. A total of 30 S. aureus isolates were investigated for the presence of SEs by PCR assay. The expression level and the effects of sodium chloride (2.5% NaCl), as well as temperature (8 ºC and 12 ºC), on the transcriptional expression, were evaluated by a quantitative reverse transcription PCR (RT-qPCR). Twelve isolates carried at least one of the SE genes. Among them, five representative isolates presented transcriptional expression for at least one gene. Both sodium chloride and low temperatures interfered with the expression of the SE genes, decreasing their values. However, one isolate displayed relative expression 2.25 times higher for sed gene than S. aureus FRI 361 in optimal conditions (p < 0.05), demonstrating their toxigenic potential even under salt stress. There was no evidence of enterotoxin gene expression at 8 ºC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Kadariya J, Smith TC, Thapaliya D (2014) Staphylococcus aureus and staphylococcal food-borne disease: an ongoing challenge in public health. Biomed Res Int 2014:827965. https://doi.org/10.1155/2014/827965

    Article  PubMed  PubMed Central  Google Scholar 

  2. Silva AC, Rodrigues MX, Silva NCC (2020) Methicillin-resistant Staphylococcus aureus in food and the prevalence in Brazil: a review. Braz J Microbiol 51:347–356. https://doi.org/10.1007/s42770-019-00168-1

    Article  CAS  PubMed  Google Scholar 

  3. Wu S, Zhang F, Huang J, Wu Q, Zhang J, Dai J, Zeng H, Yang X, Chen M, Pang R, Lei T, Zhang Y, Xue L, Wang J, Ding Y (2019) Phenotypic and genotypic characterization of PVL-positive Staphylococcus aureus isolated from retail foods in China. Int J Food Microbiol 304:119–126. https://doi.org/10.1016/j.ijfoodmicro.2019.05.021

    Article  PubMed  Google Scholar 

  4. Fisher EL, Otto M, Cheung GYC (2018) Basis of virulence in enterotoxin-mediated staphylococcal food poisoning. Front Microbiol 9:436. https://doi.org/10.3389/fmicb.2018.00436

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ding T, Yu Y, Hwang C, Dong Q, Chen S, Ye X, Liu D (2016) Modeling the effect of water activity, pH, and temperature on the probability of enterotoxin A production by Staphylococcus aureus. J Food Prot 79:148–152. https://doi.org/10.4315/0362-028X.JFP-15-161

    Article  CAS  PubMed  Google Scholar 

  6. Elahi S, Fujikawa H (2019) Effects of lactic acid and salt on enterotoxin A production and growth of Staphylococcus aureus. J Food Sci 84:3233–3240. https://doi.org/10.1111/1750-3841.14829

    Article  CAS  PubMed  Google Scholar 

  7. American Public Health Association – APHA (2002) Compendium of methods for the microbiological examination of foods, 4° ed. Washington

  8. Baron F, Cochet MF, Pellerin JL, Ben Zakour N, Lebon A, Navarro A, Proudy I, Le Loir Y, Gautier M (2004) Development of a PCR test to differentiate between Staphylococcus aureus and Staphylococcus intermedius. J Food Prot 67:2302–2305. https://doi.org/10.4315/0362-028x-67.10.2302

    Article  CAS  PubMed  Google Scholar 

  9. Matthews KR, Roberson J, Gillespie BE, Luther DA, Oliver SP (1997) Identification and differentiation of coagulase-negative Staphylococcus aureus by polymerase chain reaction. J Food Prot 60:686–688. https://doi.org/10.4315/0362-028X-60.6.686

    Article  CAS  PubMed  Google Scholar 

  10. Rosec JP, Gigaud O (2002) Staphylococcus enterotoxin genes of classical and new types detected by PCR in France. Int J Food Microbiol 77:61–70. https://doi.org/10.1016/s0168-1605(02)00044-2

    Article  CAS  PubMed  Google Scholar 

  11. Jarraud S, Mougel C, Thioulouse J, Lina G, Meugnier H, Forey F, Nesme X, Etienne J, Vandenesch F (2002) Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect Immun 70:631–641. https://doi.org/10.1128/iai.70.2.631-641.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bastos CP, Bassani MT, Mata MM, Lopes GV, Silva WP (2017) Prevalence of staphylococcal enterotoxin genes in Staphylococcus aureus isolated from food poisoning outbreaks. Can J Microbiol 63:834–840. https://doi.org/10.1139/cjm-2017-0316

    Article  CAS  PubMed  Google Scholar 

  13. Klotz M, Opper S, Heeg K, Zimmermann S (2003) Detection of Staphylococcus aureus enterotoxins A to D by real-time fluorescence PCR assay. J Clin Microbiol 41:4683–4687. https://doi.org/10.1128/jcm.41.10.4683-4687.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yuan JS, Reed A, ChenStewart FCN Jr (2006) Statistical analysis of real-time PCR data. BMC Bioinformatics 7:85–97. https://doi.org/10.1186/1471-2105-7-85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bortolaia V, Espinosa-Gongora C, Guardabassi L (2016) Human health risks associated with antimicrobial-resistant enterococci and Staphylococcus aureus on poultry meat. Clin Microbiol Infect 22:130–140. https://doi.org/10.1016/j.cmi.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  16. Li S, Wang P, Zhao J, Zhou L, Zhang P, Fu C, Meng J, Wang X (2018) Characterization of toxin genes and antimicrobial susceptibility of Staphylococcus aureus from retail raw chicken meat. J Food Prot 81:528–533. https://doi.org/10.4315/0362-028X.JFP-17-309

    Article  CAS  PubMed  Google Scholar 

  17. Ebner R, Johler S, Sihto HM, Stephan R, Zweifel C (2013) Microarray-based characterization of Staphylococcus aureus isolates obtained from chicken carcasses. J Food Prot 76:1471–1474. https://doi.org/10.4315/0362-028X.JFP-13-009

    Article  PubMed  Google Scholar 

  18. Castro RD, Pedroso SHSP, Sandes SHC, Silva GO, Luiz KCM, Dias RS, Filho RAT, Figueiredo HCP, Santos SG, Nunes AC, Souza MR (2020) Virulence factors and antimicrobial resistance of Staphylococcus aureus isolates from the production process of Minas artisanal cheese from the region of Campo das Vertentes, Brazil. J Dairy Sci 103:2098–2110. https://doi.org/10.3168/jds.2019-17138

    Article  CAS  PubMed  Google Scholar 

  19. Fijalkowski K, Peitler D, Karakulska J (2016) Staphylococci isolated from ready-to-eat meat - identification, antibiotic resistance and toxin gene profile. Int J Food Microbiol 238:113–120. https://doi.org/10.1016/j.ijfoodmicro.2016.09.001

    Article  CAS  PubMed  Google Scholar 

  20. Argudín MÁ, Mendoza MC, González-Hevia MA, Bances M, Guerra B, Rodicio MR (2012) Genotypes, exotoxin gene content, and antimicrobial resistance of Staphylococcus aureus strains recovered from foods and food handlers. Appl Environ Microbiol 78:2930–2935. https://doi.org/10.1128/AEM.07487-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Malachowa N, DeLeo FR (2010) Mobile genetic elements of Staphylococcus aureus. Cell Mol Life Sci 67:3057–3071. https://doi.org/10.1007/s00018-010-0389-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ostyn A, De Buyser ML, Guillier F, Groult J, Felix B, Salah S, Delmas G, Hennekinne JA (2010) A first evidence of a food poisoning outbreak due to staphylococcal enterotoxin type E. Euro Surveill 15:19528

    Article  Google Scholar 

  23. Etter D, Schelin J, Schuppler M, Johler S (2020) Staphylococcal enterotoxin C – an update on SEC variants, their structure and properties, and their role in foodborne intoxications. Toxins 12:584. https://doi.org/10.3390/toxins12090584

    Article  CAS  PubMed Central  Google Scholar 

  24. Johler S, Sihto HM, Macori G, Stephan R (2016) Sequence variability in Staphylococcal enterotoxin genes seb, sec, and sed. Toxins 8:169. https://doi.org/10.3390/toxins8060169

    Article  CAS  PubMed Central  Google Scholar 

  25. Ercoli L, Gallina S, Nia Y, Auvray F, Primavilla S, Guidi F, Pierucci B, Graziotti C, Decastelli L, Scuota S (2017) Investigation of a staphylococcal food poisoning outbreak from a Chantilly cream dessert, in Umbria (Italy). Foodborne Pathog Dis 14:407–413. https://doi.org/10.1089/fpd.2016.2267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zeaki N, Radström P, Schelin J (2015) Evaluation of potential effects of NaCl and sorbic acid on staphylococcal enterotoxin A formation. Microorganisms 3:551–566. https://doi.org/10.3390/microorganisms3030551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bae JH, Miller KJ (1992) Identification of two proline transport systems in Staphylococcus aureus and their possible roles in osmoregulation. Appl Environ Microbiol 58:471–475

    Article  CAS  Google Scholar 

  28. Wallin-Carlquist N, Marta D, Borch E, Radström P (2010) Prolonged expression and production of Staphylococcus aureus enterotoxin A in processed pork meat. Int J Food Microbiol 141:S69–S74. https://doi.org/10.1016/j.ijfoodmicro.2010.03.028

    Article  CAS  PubMed  Google Scholar 

  29. Zeaki N, Cao R, Skandamis PN, Radström P, Schelin J (2014) Assessment of high and low enterotoxin A producing Staphylococcus aureus strains on pork sausage. Int J Food Microbiol 182–183:44–50. https://doi.org/10.1016/j.ijfoodmicro.2014.05.010

    Article  CAS  PubMed  Google Scholar 

  30. Troler JA (1971) Effect of water activity on enterotoxin B production and growth of Staphylococcus aureus. Appl Microbiol 21:435–439

    Article  Google Scholar 

  31. McLean RA, Lilly HD, Alford JA (1968) Effects of meat-curing salts and temperature on production of staphylococcal enterotoxin B. J Bacteriol 95:1207–1211. https://doi.org/10.1128/JB.95.4.1207-1211.1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sihto HM, Stephan R, Engl C, Chen J, Johler S (2017) Effect of food-related stress conditions and loss of agr and sigB on seb promoter activity in S. aureus. Food Microbiol 65:205–212. https://doi.org/10.1016/j.fm.2017.03.006

    Article  CAS  PubMed  Google Scholar 

  33. Regassa LB, Couch JL, Betley MJ (1991) Steady-state staphylococcal enterotoxin type C mRNA is affected by a product of the accessory gene regulator (agr) and by glucose. Infect Immun 59:955–962

    Article  CAS  Google Scholar 

  34. Regassa LB, Betley MJ (1993) High sodium chloride concentrations inhibit staphylococcal enterotoxin C gene (sec) expression at the level of sec mRNA. Infect Immun 61:1581–1585

    Article  CAS  Google Scholar 

  35. Sihto HM, Tasara T, Stephan R, Johler S (2015) Temporal expression of the staphylococcal enterotoxin D gene under NaCl stress conditions. FEMS Microbiol Lett 362:pii:fnv024. https://doi.org/10.1093/femsle/fnv024

  36. Sihto HM, Tasara T, Stephan R, Johler S (2016) Growth behavior and temporal enterotoxin D expression of Staphylococcus aureus strains under glucose and lactic acid stress. Food Control 62:69–73. https://doi.org/10.1016/j.foodcont.2015.10.008

    Article  CAS  Google Scholar 

  37. Sihto HM, Susilo YB, Tasara T, Radström P, Stephan R, Chelin J, Johler S (2016) Effect of sodium nitrite and regulatory mutations Δagr, ΔsarA, and ΔsarB on the mRNA and protein levels of staphylococcal enterotoxin D. Food Control 65:37–45. https://doi.org/10.1016/j.foodcont.2016.01.007

    Article  CAS  Google Scholar 

  38. Schelin J, Susilo YB, Johler S (2017) Expression of staphylococcal enterotoxins under stress encountered during food production and preservation. Toxins 9:401. https://doi.org/10.3390/toxins9120401

    Article  CAS  PubMed Central  Google Scholar 

  39. Babic M, Pajic M, Radinovic M, Bobos S, Bulajic S, Nikolic A, Velebit B (2019) Effects of temperature abuse on the growth and staphylococcal enterotoxin A gene (sea) expression of Staphylococcus aureus in milk. Foodborne Pathog Dis 16:282–289. https://doi.org/10.1089/fpd.2018.2544

    Article  CAS  PubMed  Google Scholar 

  40. Tsutsuura S, Shimamura Y, Murata M (2013) Temperature dependence of the production of staphylococcal enterotoxin A by Staphylococcus aureus. Biosci Biotechnol Biochem 77:30–37. https://doi.org/10.1271/bbb.120391

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors extend their thanks to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Process No. 306367/2019-0).

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior — Brazil (CAPES) — Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Caroline Peixoto Bastos and Graciela Volz Lopes. The manuscript was written and reviewed by Caroline Peixoto Bastos, Graciela Volz Lopes, and Wladimir Padilha da Silva. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wladimir Padilha da Silva.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, G.V., Bastos, C.P. & da Silva, W.P. The effect of sodium chloride and temperature on the levels of transcriptional expression of staphylococcal enterotoxin genes in Staphylococcus aureus isolates from broiler carcasses. Braz J Microbiol 52, 2343–2350 (2021). https://doi.org/10.1007/s42770-021-00544-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00544-w

Keywords

Navigation