Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Thermoelectric properties of polypropylene carbon nanofiber melt-mixed composites: exploring the role of polymer on their Seebeck coefficient

Abstract

The effect of polypropylene (PP) on the Seebeck coefficient (S) of carbon nanofibers (CNFs) in melt-extruded PP composites filled with up to 5 wt. % of CNFs was analyzed in this study. The as-received CNFs present an electrical conductivity of ~320 S m−1 and an interesting phenomenon of showing negative S-values of −5.5 μVK−1, with 10−2 µW/mK2 as the power factor (PF). In contrast, the PP/CNF composites with 5 wt. % of CNFs showed lower conductivities of ~50 S m−1, less negative S-values of −3.8 μVK−1, and a PF of 7 × 10−4 µW/mK2. In particular, the change in the Seebeck coefficient of the PP/CNF composites is explained by a slight electron donation from the outer layers of the CNFs to the PP molecules, which could reduce the S-values of the as-received CNFs. Our study indicates that even insulating polymers such as PP may have a quantifiable effect on the intrinsic Seebeck coefficient of carbon-based nanostructures, and this fact should also be taken into consideration to tailor conductive polymer composites with the desired thermoelectric (TE) properties.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gayner C, Kar KK. Recent advances in thermoelectric materials. Prog Mater Sci. 2016;83:330–82. https://doi.org/10.1016/j.pmatsci.2016.07.002.

    Article  CAS  Google Scholar 

  2. Rowe DM. CRC handbook of thermoelectrics. Boca Raton, FL: CRC press; 1995.

  3. Blackburn JL, Ferguson AJ, Cho C, Grunlan JC. Carbon-nanotube-based thermoelectric materials and devices. Adv Mater. 2018;30. https://doi.org/10.1002/adma.201704386.

  4. Tan G, Zhao LD, Kanatzidis MG. Rationally designing high-performance bulk thermoelectric materials. Chem Rev. 2016;116:12123–49. https://doi.org/10.1021/acs.chemrev.6b00255.

    Article  CAS  PubMed  Google Scholar 

  5. McGrail BT, Sehirlioglu A, Pentzer E. Polymer composites for thermoelectric applications. Angew Chem Int Ed. 2015;54:1710–23. https://doi.org/10.1002/anie.201408431.

    Article  CAS  Google Scholar 

  6. Nigro B, Grimaldi C, Ryser P. Tunneling and percolation transport regimes in segregated composites. Phys Rev E. 2012;85. https://doi.org/10.1103/PhysRevE.85.011137.

  7. Stauffer D, Aharony A. Introduction to percolation theory. London: Taylor & Francis; 1992.

  8. McLachlan DS, Chiteme C, Park C, Wise KE, Lowther SE, Lillehei PT, Siochi EJ, Harrison JS. AC and DC percolative conductivity of single wall carbon nanotube polymer composites. J Polym Sci Part B Polym Phys. 2005;43:3273–87. https://doi.org/10.1002/polb.20597.

    Article  CAS  Google Scholar 

  9. Alig I, Pötschke P, Lellinger D, Skipa T, Pegel S, Kasaliwal GR, Villmow T. Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer. 2012;53:4–28. https://doi.org/10.1016/j.polymer.2011.10.063.

    Article  CAS  Google Scholar 

  10. Chen J, Liu B, Gao X, Xu D. A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes. RSC Adv. 2018;8:28048–85. https://doi.org/10.1039/c8ra04205e.

    Article  CAS  Google Scholar 

  11. Baudouin AC, Devaux J, Bailly C. Localization of carbon nanotubes at the interface in blends of polyamide and ethylene-acrylate copolymer. Polymer. 2010;51:1341–54. https://doi.org/10.1016/j.polymer.2010.01.050.

    Article  CAS  Google Scholar 

  12. Li C, Thostenson ET, Chou TW. Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube-based composites. Appl Phys Lett. 2007;91. https://doi.org/10.1063/1.2819690.

  13. Krause B, Barbier C, Levente J, Klaus M, Pötschke P. Screening of different carbon nanotubes in melt-mixed polymer composites with different polymer matrices for their thermoelectrical properties. J Compos Sci. 2019;3:106.

    Article  CAS  Google Scholar 

  14. Kaiser AB. Thermoelectric power and conductivity of heterogeneous conducting polymers. Phys Rev B. 1989;40:2806–13. https://doi.org/10.1103/PhysRevB.40.2806.

    Article  CAS  Google Scholar 

  15. Hewitt CA, Kaiser AB, Roth S, Craps M, Czerw R, Carroll DL. Varying the concentration of single walled carbon nanotubes in thin film polymer composites, and its effect on thermoelectric power. Appl Phys Lett. 2011;98. https://doi.org/10.1063/1.3580761.

  16. Paleo AJ, Vieira EMF, Wan K, Bondarchuk O, Cerqueira MF, Goncalves LM, Bilotti E, Alpuim P, Rocha AM. Negative thermoelectric power of melt mixed vapor grown carbon nanofiber polypropylene composites. Carbon. 2019;150:408–16. https://doi.org/10.1016/j.carbon.2019.05.035.

    Article  CAS  Google Scholar 

  17. Tibbetts GG, Lake ML, Strong KL, Rice BP. A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos Sci Technol. 2007;67:1709–18. https://doi.org/10.1016/j.compscitech.2006.06.015.

    Article  CAS  Google Scholar 

  18. Al-Saleh MH, Sundararaj U. A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon. 2009;47:2–22. https://doi.org/10.1016/j.carbon.2008.09.039.

    Article  CAS  Google Scholar 

  19. Paleo AJ, Sencadas V, Van Hattum FWJ, Lanceros-Méndez S, Ares A. Carbon nanofiber type and content dependence of the physical properties of carbon nanofiber reinforced polypropylene composites. Polym Eng Sci. 2014;54:117–28. https://doi.org/10.1002/pen.23539.

    Article  CAS  Google Scholar 

  20. Jenschke W, Ullrich M, Krause B, Pötschke P. Messanlage zur Untersuchung des Seebeck-Effektes in polymermaterialien measuring apparatus for study of Seebeck effect in polymer materials. Technisches Mess. 2020;87:495–503. https://doi.org/10.1515/teme-2019-0152.

    Article  CAS  Google Scholar 

  21. Gnanaseelan M, Chen Y, Luo J, Krause B, Pionteck J, Pötschke P, Qi H. Cellulose-carbon nanotube composite aerogels as novel thermoelectric materials. Compos Sci Technol. 2018;163:133–40. https://doi.org/10.1016/j.compscitech.2018.04.026.

    Article  CAS  Google Scholar 

  22. Mahanta NK, Abramson AR, Lake ML, Burton DJ, Chang JC, Mayer HK, Ravine JL. Thermal conductivity of carbon nanofiber mats. Carbon. 2010;48:4457–65. https://doi.org/10.1016/j.carbon.2010.08.005.

    Article  CAS  Google Scholar 

  23. Paleo AJ, García X, Arboleda-Clemente L, Van Hattum FW, Abad MJ, Ares A. Enhanced thermal conductivity of rheologically percolated carbon nanofiber reinforced polypropylene composites. Polym Adv Technol. 2015;26:369–75. https://doi.org/10.1002/pat.3462.

    Article  CAS  Google Scholar 

  24. ASTM F76-08 (2016)e1 Standard test methods for measuring resistivity and hall coefficient and determining hall mobility in single-crystal semiconductors.

  25. Paleo AJ, Vieira EMF, Wan K, Bondarchuk O, Cerqueira MF, Bilotti E, Melle-Franco M, Rocha AM. Vapor grown carbon nanofiber based cotton fabrics with negative thermoelectric power. Cellulose. 2020;27:9091–104. https://doi.org/10.1007/s10570-020-03391-4.

    Article  CAS  Google Scholar 

  26. Grimme S, Bannwarth C, Shushkov P:. A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z = 1-86). J Chem Theory Comput. 2017;13:1989–2009. https://doi.org/10.1021/acs.jctc.7b00118.

    Article  CAS  PubMed  Google Scholar 

  27. Marenich AV, Jerome SV, Cramer CJ, Truhlar DG. Charge model 5: An extension of hirshfeld population analysis for the accurate description of molecular interactions in gaseous and condensed phases. J Chem Theory Comput. 2012;8:527–41. https://doi.org/10.1021/ct200866d.

    Article  CAS  PubMed  Google Scholar 

  28. Tessonnier JP, Rosenthal D, Hansen TW, Hess C, Schuster ME, Blume R, Girgsdies F, Pfänder N, Timpe O, Su DS, Schlögl R. Analysis of the structure and chemical properties of some commercial carbon nanostructures. Carbon. 2009;47:1779–98. https://doi.org/10.1016/j.carbon.2009.02.032.

    Article  CAS  Google Scholar 

  29. Zettl A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science. 2000;287:1801–4. https://doi.org/10.1126/science.287.5459.1801.

    Article  PubMed  Google Scholar 

  30. Stokes KL, Tritt TM, Fuller-Mora WW, Ehrlich AC, Jacobsen RL. Electronic transport properties of highly conducting vapor-grown carbon fiber composites. In: International Conference on Thermoelectrics, Pasadena, CA, USA, ICT, Proceedings; 1996. pp. 164–7.

  31. Kumanek B, Stando G, Wróbel PS, Janas D. Impact of synthesis parameters of multi-walled carbon nanotubes on their thermoelectric properties. Materials. 2019;12:1–13. https://doi.org/10.3390/ma12213567.

    Article  CAS  Google Scholar 

  32. Hewitt CA, Kaiser AB, Craps M, Czerw R, Carroll DL. Negative thermoelectric power from large diameter multiwalled carbon nanotubes grown at high chemical vapor deposition temperatures. J Appl Phys. 2013;114. https://doi.org/10.1063/1.4819104.

  33. Krause B, Konidakis I, Arjmand M, Sundararaj U, Fuge R, Liebscher M, Hampel S, Klaus M, Serpetzoglou E, Stratakis E, Pötschke P. Nitrogen-doped carbon nanotube/polypropylene composites with negative seebeck coefficient. J Compos Sci. 2020;4:14.

    Article  CAS  Google Scholar 

  34. Nonoguchi Y, Iihara Y, Ohashi K, Murayama T, Kawai T. Air-tolerant fabrication and enhanced thermoelectric performance of n-type single-walled carbon nanotubes encapsulating 1,1′-Bis(diphenylphosphino)ferrocene. Chem Asian J. 2016;11:2423–7. https://doi.org/10.1002/asia.201600810.

    Article  CAS  PubMed  Google Scholar 

  35. Nonoguchi Y, Nakano M, Murayama T, Hagino H, Hama S, Miyazaki K, Matsubara R, Nakamura M, Kawai T. Simple salt-coordinated n-type nanocarbon materials stable in air. Adv Funct Mater. 2016;26:3021–8. https://doi.org/10.1002/adfm.201600179.

    Article  CAS  Google Scholar 

  36. Yu C, Murali A, Choi K, Ryu Y. Air-stable fabric thermoelectric modules made of N- and P-type carbon nanotubes. Energy Environ Sci. 2012;5:9481–6. https://doi.org/10.1039/c2ee22838f.

    Article  CAS  Google Scholar 

  37. Luo J, Cerretti G, Krause B, Zhang L, Otto T, Jenschke W, Ullrich M, Tremel W, Voit B, Pötschke P. Polypropylene-based melt mixed composites with singlewalled carbon nanotubes for thermoelectric applications: Switching from p-type to n-type by the addition of polyethylene glycol. Polymer. 2017;108:513–20. https://doi.org/10.1016/j.polymer.2016.12.019.

    Article  CAS  Google Scholar 

  38. Smith RC, Liang C, Landry M, Nelson JK, Schadler LS. The mechanisms leading to the useful electrical properties of polymer nanodielectrics. IEEE Trans Dielectr Electr Insulation. 2008;15:187–96. https://doi.org/10.1109/T-DEI.2008.4446750.

    Article  CAS  Google Scholar 

  39. Krause B, Bezugly V, Khavrus V, Ye L, Cuniberti G, Pötschke P. Boron doping of SWCNTs as a way to enhance the thermoelectric properties of melt‐mixed polypropylene/SWCNT composites. Energies. 2020;13. https://doi.org/10.3390/en13020394.

Download references

Acknowledgements

The authors affiliated with 2C2T acknowledge support from FCT-Foundation for Science and Technology within the scope of project UID/CTM/00264/2020. The authors would like to thank the staff of the IPF’s Research Technology Department for their support with the TE measuring device, and they appreciate the help of Mrs. Manuela Heber in the SEM study and Dr. Oliver Schraidt from INL in the TEM analysis. In addition, support through project IF/00894/2015 and within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020 and UIDP/50011/2020 and access to the Navigator platform (LCA-UC) through the Advanced Computing Project CPCA/A2/2524/2020, financed by national funds through the Portuguese Foundation for Science and Technology I.P./MCTES, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio José Paleo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paleo, A.J., Krause, B., Cerqueira, M.F. et al. Thermoelectric properties of polypropylene carbon nanofiber melt-mixed composites: exploring the role of polymer on their Seebeck coefficient. Polym J 53, 1145–1152 (2021). https://doi.org/10.1038/s41428-021-00518-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00518-7

Search

Quick links