Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interferon-γ: teammate or opponent in the tumour microenvironment?

Abstract

Cancer immunotherapy offers substantive benefit to patients with various tumour types, in some cases leading to complete tumour clearance. However, many patients do not respond to immunotherapy, galvanizing the field to define the mechanisms of pre-existing and acquired resistance. Interferon-γ (IFNγ) is a cytokine that has both protumour and antitumour activities, suggesting that it may serve as a nexus for responsiveness to immunotherapy. Many cancer immunotherapies and chemotherapies induce IFNγ production by various cell types, including activated T cells and natural killer cells. Patients resistant to these therapies commonly have molecular aberrations in the IFNγ signalling pathway or express resistance molecules driven by IFNγ. Given that all nucleated cells can respond to IFNγ, the functional consequences of IFNγ production need to be carefully dissected on a cell-by-cell basis. Here, we review the cells that produce IFNγ and the different effects of IFNγ in the tumour microenvironment, highlighting the pleiotropic nature of this multifunctional and abundant cytokine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classical IFNγ producers in the tumour microenvironment.
Fig. 2: IFNγ responders in the tumour microenvironment.

Similar content being viewed by others

References

  1. Wheelock, E. F. Interferon-like virus-inhibitor induced in human leukocytes by phytohemagglutinin. Science 149, 310–311 (1965).

    Article  CAS  PubMed  Google Scholar 

  2. Dighe, A. S., Richards, E., Old, L. J. & Schreiber, R. D. Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN gamma receptors. Immunity 1, 447–456 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Nastala, C. L. et al. Recombinant IL-12 administration induces tumor regression in association with IFN-gamma production. J. Immunol. 153, 1697–1706 (1994).

    CAS  PubMed  Google Scholar 

  4. Young, H. A., Dray, J. F. & Farrar, W. L. Expression of transfected human interferon-gamma DNA: evidence for cell-specific regulation. J. Immunol. 136, 4700–4703 (1986).

    CAS  PubMed  Google Scholar 

  5. Soutto, M., Zhou, W. & Aune, T. M. Cutting edge: distal regulatory elements are required to achieve selective expression of IFN-gamma in Th1/Tc1 effector cells. J. Immunol. 169, 6664–6667 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Fields, P. E., Kim, S. T. & Flavell, R. A. Cutting edge: changes in histone acetylation at the IL-4 and IFN-gamma loci accompany Th1/Th2 differentiation. J. Immunol. 169, 647–650 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Gomez, J. A. et al. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell 152, 743–754 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shnyreva, M. et al. Evolutionarily conserved sequence elements that positively regulate IFN-gamma expression in T cells. Proc. Natl Acad. Sci. USA 101, 12622–12627 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kiani, A. et al. Regulation of interferon-gamma gene expression by nuclear factor of activated T cells. Blood 98, 1480–1488 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Beals, C. R., Sheridan, C. M., Turck, C. W., Gardner, P. & Crabtree, G. R. Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 275, 1930–1934 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Dong, C., Davis, R. J. & Flavell, R. A. MAP kinases in the immune response. Annu. Rev. Immunol. 20, 55–72 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Park, W.-R. et al. A mechanism underlying STAT4-mediated up-regulation of IFN-gamma induction in TCR-triggered T cells. Int. Immunol. 16, 295–302 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Johnson, H. M. & Torres, B. A. Leukotrienes: positive signals for regulation of gamma-interferon production. J. Immunol. 132, 413–416 (1984).

    CAS  PubMed  Google Scholar 

  14. Kasahara, T., Hooks, J. J., Dougherty, S. F. & Oppenheim, J. J. Interleukin 2-mediated immune interferon (IFN-gamma) production by human T cells and T cell subsets. J. Immunol. 130, 1784–1789 (1983).

    CAS  PubMed  Google Scholar 

  15. Johnson, H. M., Russell, J. K. & Torres, B. A. Second messenger role of arachidonic acid and its metabolites in interferon-gamma production. J. Immunol. 137, 3053–3056 (1986).

    CAS  PubMed  Google Scholar 

  16. Vignali, D. A. A. & Kuchroo, V. K. IL-12 family cytokines: immunological playmakers. Nat. Immunol. 13, 722–728 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rex, D. A. B. et al. A comprehensive pathway map of IL-18-mediated signalling. J. Cell Commun. Signal. 14, 257–266 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Okamura, H. et al. Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 378, 88–91 (1995). The authors cloned IL-18 (also known as IGIF) and showed in vitro induction of IFNγ with recombinant IL-18 via an IL-12-independent pathway.

    Article  CAS  PubMed  Google Scholar 

  19. Nakahira, M. et al. Synergy of IL-12 and IL-18 for IFN-gamma gene expression: IL-12-induced STAT4 contributes to IFN-gamma promoter activation by up-regulating the binding activity of IL-18-induced activator protein 1. J. Immunol. 168, 1146–1153 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Mavropoulos, A., Sully, G., Cope, A. P. & Clark, A. R. Stabilization of IFN-gamma mRNA by MAPK p38 in IL-12- and IL-18-stimulated human NK cells. Blood 105, 282–288 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Hodge, D. L., Martinez, A., Julias, J. G., Taylor, L. S. & Young, H. A. Regulation of nuclear gamma interferon gene expression by interleukin 12 (IL-12) and IL-2 represents a novel form of posttranscriptional control. Mol. Cell. Biol. 22, 1742–1753 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Steiner, D. F. et al. MicroRNA-29 regulates T-box transcription factors and interferon-γ production in helper T cells. Immunity 35, 169–181 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, H. et al. Regulation of human natural killer cell IFN-γ production by microRNA-146a via targeting the NF-κB signaling pathway. Front. Immunol. 9, 293 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ma, N. et al. MicroRNA-142-3p inhibits IFN-γ production via targeting of RICTOR in Aspergillus fumigatus activated CD4+ T cells. Ann. Transl. Med. 7, 649 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang, H., Zhang, G., Wu, J.-H. & Jiang, C.-P. Diverse roles of miR-29 in cancer (review). Oncol. Rep. 31, 1509–1516 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Shahriar, A. et al. The dual role of mir-146a in metastasis and disease progression. Biomed. Pharmacother. 126, 110099 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Ealick, S. E. et al. Three-dimensional structure of recombinant human interferon-gamma. Science 252, 698–702 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Miyakawa, N. et al. Prolonged circulation half-life of interferon γ activity by gene delivery of interferon γ-serum albumin fusion protein in mice. J. Pharm. Sci. 100, 2350–2357 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Charych, D. et al. Modeling the receptor pharmacology, pharmacokinetics, and pharmacodynamics of NKTR-214, a kinetically-controlled interleukin-2 (IL2) receptor agonist for cancer immunotherapy. PLoS ONE 12, e0179431 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Molinas, F. C., Wietzerbin, J. & Falcoff, E. Human platelets possess receptors for a lymphokine: demonstration of high specific receptors for HuIFN-gamma. J. Immunol. 138, 802–806 (1987).

    CAS  PubMed  Google Scholar 

  31. Dummer, R. et al. Phase II clinical trial of intratumoral application of TG1042 (adenovirus-interferon-gamma) in patients with advanced cutaneous T-cell lymphomas and multilesional cutaneous B-cell lymphomas. Mol. Ther. 18, 1244–1247 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Altan-Bonnet, G. & Mukherjee, R. Cytokine-mediated communication: a quantitative appraisal of immune complexity. Nat. Rev. Immunol. 19, 205–217 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pearce, E. L. et al. Control of effector CD8+ T cell function by the transcription factor eomesodermin. Science 302, 1041–1043 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Szabo, S. J. et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science 295, 338–342 (2002). This study shows the requirement of T-bet expression for IFNγ production in CD4+ TH cells and NK cells but not in CD8+ T cells, indicating that distinct transcription factors control IFNγ in immune cell subsets.

    Article  CAS  PubMed  Google Scholar 

  35. Sanderson, N. S. R. et al. Cytotoxic immunological synapses do not restrict the action of interferon-γ to antigenic target cells. Proc. Natl Acad. Sci. USA 109, 7835–7840 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gérard, A. et al. Secondary T cell-T cell synaptic interactions drive the differentiation of protective CD8+ T cells. Nat. Immunol. 14, 356–363 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Thibaut, R. et al. Bystander IFN-γ activity promotes widespread and sustained cytokine signaling altering the tumor microenvironment. Nat. Cancer 1, 302–314 (2020). This study shows that IFNγ diffuses extensively throughout the TME to produce a widespread field of IFNγ. Sustained IFNγ signalling via STAT1 and IRF8 was required to modulate tumour cell expression of MHC class I and PDL1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hoekstra, M. E. et al. Long-distance modulation of bystander tumor cells by CD8+ T cell-secreted IFNγ. Nat. Cancer 1, 291–301 (2020). This study visualizes the long-range diffusion of IFNγ produced by low-frequency activated CD8+ T cells in the TME.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu, C. et al. Treg cells promote the SREBP1-dependent metabolic fitness of tumor-promoting macrophages via repression of CD8+ T cell-derived interferon-γ. Immunity 51, 381–397.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kalathil, S. G., Hutson, A., Barbi, J., Iyer, R. & Thanavala, Y. Augmentation of IFN-γ+CD8+ T cell responses correlates with survival of HCC patients on sorafenib therapy. JCI Insight 4, e130116 (2019).

    Article  PubMed Central  Google Scholar 

  41. Huse, M., Lillemeier, B. F., Kuhns, M. S., Chen, D. S. & Davis, M. M. T cells use two directionally distinct pathways for cytokine secretion. Nat. Immunol. 7, 247–255 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Dai, M., Hellstrom, I., Yip, Y. Y., Sjögren, H. O. & Hellstrom, K. E. Tumor regression and cure depends on sustained th1 responses. J. Immunother. 41, 369–378 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kryczek, I. et al. Human TH17 cells are long-lived effector memory cells. Sci. Transl Med. 3, 104ra100 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kryczek, I. et al. Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114, 1141–1149 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kubota, A., Lian, R. H., Lohwasser, S., Salcedo, M. & Takei, F. IFN-gamma production and cytotoxicity of IL-2-activated murine NK cells are differentially regulated by MHC class I molecules. J. Immunol. 163, 6488–6493 (1999).

    CAS  PubMed  Google Scholar 

  46. Almishri, W. et al. TNFα augments cytokine-induced NK cell IFNγ production through TNFR2. J. Innate Immun. 8, 617–629 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reefman, E. et al. Cytokine secretion is distinct from secretion of cytotoxic granules in NK cells. J. Immunol. 184, 4852–4862 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Villegas, F. R. et al. Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer 35, 23–28 (2002).

    Article  PubMed  Google Scholar 

  49. Lee, S. et al. A high-throughput assay of NK cell activity in whole blood and its clinical application. Biochem. Biophys. Res. Commun. 445, 584–590 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Henriksen, J. R. et al. Favorable prognostic impact of natural killer cells and T cells in high-grade serous ovarian carcinoma. Acta Oncol. 59, 652–659 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Lee, J. et al. Natural killer cell activity for IFN-gamma production as a supportive diagnostic marker for gastric cancer. Oncotarget 8, 70431–70440 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Moreno, M. et al. IFN-gamma-producing human invariant NKT cells promote tumor-associated antigen-specific cytotoxic T cell responses. J. Immunol. 181, 2446–2454 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Das, R. et al. The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation. Blood 121, 3386–3395 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wolf, B. J., Choi, J. E. & Exley, M. A. Novel approaches to exploiting invariant NKT cells in cancer immunotherapy. Front. Immunol. 9, 384 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Brigl, M., Bry, L., Kent, S. C., Gumperz, J. E. & Brenner, M. B. Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat. Immunol. 4, 1230–1237 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, Y. et al. α-GalCer and iNKT cell-based cancer immunotherapy: realizing the therapeutic potentials. Front. Immunol. 10, 1126 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Takami, M., Ihara, F. & Motohashi, S. Clinical application of iNKT cell-mediated anti-tumor activity against lung cancer and head and neck cancer. Front. Immunol. 9, 2021 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Parekh, V. V. et al. PD-1/PD-L blockade prevents anergy induction and enhances the anti-tumor activities of glycolipid-activated invariant NKT cells. J. Immunol. 182, 2816–2826 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Sawant, D. V., Hamilton, K. & Vignali, D. A. A. Interleukin-35: expanding its job profile. J. Interferon Cytokine Res. 35, 499–512 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vignali, D. A. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ouyang, W. et al. Novel Foxo1-dependent transcriptional programs control Treg cell function. Nature 491, 554–559 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lucca, L. E. et al. TIGIT signaling restores suppressor function of Th1 Tregs. JCI Insight 4, e124427 (2019).

    Article  PubMed Central  Google Scholar 

  63. Koch, M. A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 10, 595–602 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Levine, A. G. et al. Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature 546, 421–425 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Overacre-Delgoffe, A. E. et al. Interferon-γ drives Treg fragility to promote anti-tumor immunity. Cell 169, 1130–1141.e11 (2017). This study identifies a novel fragile state of intratumoural Treg cells characterized by the gain of IFNγ production and loss of suppressive function. A Treg cell response to IFNγ was required for benefit from anti-PD1 therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Seltmann, J., Werfel, T. & Wittmann, M. Evidence for a regulatory loop between IFN-γ and IL-33 in skin inflammation. Exp. Dermatol. 22, 102–107 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Liang, Y. et al. IL-33 promotes innate IFN-γ production and modulates dendritic cell response in LCMV-induced hepatitis in mice. Eur. J. Immunol. 45, 3052–3063 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hatzioannou, A. et al. An intrinsic role of IL-33 in Treg cell-mediated tumor immunoevasion. Nat. Immunol. 21, 75–85 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Ameri, A. H. et al. IL-33/regulatory T cell axis triggers the development of a tumor-promoting immune environment in chronic inflammation. Proc. Natl Acad. Sci. USA 116, 2646–2651 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gao, Y. et al. Gamma delta T cells provide an early source of interferon gamma in tumor immunity. J. Exp. Med. 198, 433–442 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hoeres, T., Holzmann, E., Smetak, M., Birkmann, J. & Wilhelm, M. PD-1 signaling modulates interferon-γ production by gamma delta (γδ) T-cells in response to leukemia. Oncoimmunology 8, 1550618 (2019).

    Article  PubMed  Google Scholar 

  72. Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Girardi, M. et al. Regulation of cutaneous malignancy by gammadelta T cells. Science 294, 605–609 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Fillatreau, S. B cells and their cytokine activities implications in human diseases. Clin. Immunol. 186, 26–31 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ballesteros-Tato, A., Stone, S. L. & Lund, F. E. Innate IFNγ-producing B cells. Cell Res. 24, 135–136 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Harris, D. P., Goodrich, S., Gerth, A. J., Peng, S. L. & Lund, F. E. Regulation of IFN-gamma production by B effector 1 cells: essential roles for T-bet and the IFN-gamma receptor. J. Immunol. 174, 6781–6790 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Vitale, L. A. et al. Development of CDX-1140, an agonist CD40 antibody for cancer immunotherapy. Cancer Immunol. Immunother. 68, 1–13 (2018).

    Google Scholar 

  78. Piechutta, M. & Berghoff, A. S. New emerging targets in cancer immunotherapy: the role of cluster of differentiation 40 (CD40/TNFR5). ESMO Open 4, e000510 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bhat, M. Y. et al. Comprehensive network map of interferon gamma signaling. J. Cell Commun. Signal. 12, 745–751 (2018). This study develops a comprehensive IFNγ signalling network curated from the literature and organized into a publicly available browser.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Samarajiwa, S. A., Forster, S., Auchettl, K. & Hertzog, P. J. INTERFEROME: the database of interferon regulated genes. Nucleic Acids Res. 37, D852–D857 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Refaeli, Y., Van Parijs, L., Alexander, S. I. & Abbas, A. K. Interferon gamma is required for activation-induced death of T lymphocytes. J. Exp. Med. 196, 999–1005 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Prabhu, N. et al. Gamma interferon regulates contraction of the influenza virus-specific CD8 T cell response and limits the size of the memory population. J. Virol. 87, 12510–12522 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Badovinac, V. P., Porter, B. B. & Harty, J. T. CD8+ T cell contraction is controlled by early inflammation. Nat. Immunol. 5, 809–817 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Ouyang, W., Beckett, O., Flavell, R. A. & Li, M. O. An essential role of the forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance. Immunity 30, 358–371 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Qiang, L., Banks, A. S. & Accili, D. Uncoupling of acetylation from phosphorylation regulates FoxO1 function independent of its subcellular localization. J. Biol. Chem. 285, 27396–27401 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Stoycheva, D. et al. IFN-γ regulates CD8+memory T cell differentiation and survival in response to weak, but not strong, TCR signals. J. Immunol. 194, 553–559 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Pedicord, V. A., Montalvo, W., Leiner, I. M. & Allison, J. P. Single dose of anti-CTLA-4 enhances CD8 + T-cell memory formation, function, and maintenance. Proc. Natl Acad. Sci. USA 108, 266–271 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Tau, G. Z., Cowan, S. N., Weisburg, J., Braunstein, N. S. & Rothman, P. B. Regulation of IFN-gamma signaling is essential for the cytotoxic activity of CD8(+) T cells. J. Immunol. 167, 5574–5582 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Pai, C.-C. S. et al. Clonal deletion of tumor-specific T cells by interferon-γ confers therapeutic resistance to combination immune checkpoint blockade. Immunity 50, 477–492.e8 (2019). This study shows that tumour-specific CD8+ T cells express higher levels of IFNGR than T cells, thus inducing apoptosis, an immune-intrinsic mechanism of resistance to checkpoint blockade.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Colvin, R. A., Campanella, G. S. V., Sun, J. & Luster, A. D. Intracellular domains of CXCR3 that mediate CXCL9, CXCL10, and CXCL11 function. J. Biol. Chem. 279, 30219–30227 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Liu, Z. et al. CXCL11-armed oncolytic poxvirus elicits potent antitumor immunity and shows enhanced therapeutic efficacy. Oncoimmunology 5, e1091554 (2016).

    Article  PubMed  CAS  Google Scholar 

  92. Bhat, P., Leggatt, G., Waterhouse, N. & Frazer, I. H. Interferon-γ derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity. Cell Death Dis. 8, e2836 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bonaventura, P. et al. Cold tumors: a therapeutic challenge for immunotherapy. Front. Immunol. 10, 168 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pernis, A. et al. Lack of interferon gamma receptor beta chain and the prevention of interferon gamma signaling in TH1 cells. Science 269, 245–247 (1995).

    Article  CAS  PubMed  Google Scholar 

  95. Holzer, U., Reinhardt, K., Lang, P., Handgretinger, R. & Fischer, N. Influence of a mutation in IFN-γ receptor 2 (IFNGR2) in human cells on the generation of Th17 cells in memory T cells. Hum. Immunol. 74, 693–700 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Lazarevic, V. et al. T-bet represses T(H)17 differentiation by preventing Runx1-mediated activation of the gene encoding RORγt. Nat. Immunol. 12, 96–104 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Naka, T. et al. SOCS-1/SSI-1-deficient NKT cells participate in severe hepatitis through dysregulated cross-talk inhibition of IFN-gamma and IL-4 signaling in vivo. Immunity 14, 535–545 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Hwang, E. S., Szabo, S. J., Schwartzberg, P. L. & Glimcher, L. H. T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science 307, 430–433 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Diskin, B. et al. PD-L1 engagement on T cells promotes self-tolerance and suppression of neighboring macrophages and effector T cells in cancer. Nat. Immunol. 21, 442–454 (2020). This study shows that PDL1 ‘back-signalling’ in CD4+ T cells decreased activation and TH1 cell polarization and induced anergy in CD8+ T cells. PDL1+ T cells restrained PD1+ effector T cells and macrophages and induced a protumorigenic microenvironment.

    Article  CAS  PubMed  Google Scholar 

  100. Zhou, Y., Weyman, C. M., Liu, H., Almasan, A. & Zhou, A. IFN-gamma induces apoptosis in HL-60 cells through decreased Bcl-2 and increased Bak expression. J. Interferon Cytokine Res. 28, 65–72 (2008).

    Article  PubMed  CAS  Google Scholar 

  101. Xu, X., Fu, X. Y., Plate, J. & Chong, A. S. IFN-gamma induces cell growth inhibition by Fas-mediated apoptosis: requirement of STAT1 protein for up-regulation of Fas and FasL expression. Cancer Res. 58, 2832–2837 (1998).

    CAS  PubMed  Google Scholar 

  102. Rakshit, S. et al. Interferon-gamma induced cell death: regulation and contributions of nitric oxide, cJun N-terminal kinase, reactive oxygen species and peroxynitrite. Biochim. Biophys. Acta 1843, 2645–2661 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Overacre, A. E. & Vignali, D. A. Treg stability: to be or not to be. Curr. Opin. Immunol. 39, 39–43 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Halim, L. et al. An atlas of human regulatory T helper-like cells reveals features of Th2-like Tregs that support a tumorigenic environment. Cell Rep. 20, 757–770 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wu, S.-P. et al. Stromal PD-L1-positive regulatory T cells and PD-1-positive CD8-positive T cells define the response of different subsets of non-small cell lung cancer to PD-1/PD-L1 blockade immunotherapy. J. Thorac. Oncol. 13, 521–532 (2018).

    Article  PubMed  Google Scholar 

  106. Koch, M. A. et al. T-bet+ Treg cells undergo abortive Th1 cell differentiation due to impaired expression of IL-12 receptor β2. Immunity 37, 501–510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fallarino, F. et al. T cell apoptosis by tryptophan catabolism. Cell Death Differ. 9, 1069–1077 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Chevolet, I. et al. Characterization of the in vivo immune network of IDO, tryptophan metabolism, PD-L1, and CTLA-4 in circulating immune cells in melanoma. Oncoimmunology 4, e982382 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Prendergast, G. C., Malachowski, W. P., DuHadaway, J. B. & Muller, A. J. Discovery of IDO1 inhibitors: from bench to bedside. Cancer Res. 77, 6795–6811 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mitchell, T. C. et al. Epacadostat plus pembrolizumab in patients with advanced solid tumors: phase I results from a multicenter, open-label phase I/II trial (ECHO-202/KEYNOTE-037). J. Clin. Oncol. 36, 3223–3230 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Carnaud, C. et al. Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J. Immunol. 163, 4647–4650 (1999).

    CAS  PubMed  Google Scholar 

  112. Putz, E. M. et al. Novel non-canonical role of STAT1 in natural killer cell cytotoxicity. Oncoimmunology 5, e1186314 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Wendel, M., Galani, I. E., Suri-Payer, E. & Cerwenka, A. Natural killer cell accumulation in tumors is dependent on IFN-gamma and CXCR3 ligands. Cancer Res. 68, 8437–8445 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Park, S.-Y. et al. IFN-gamma enhances TRAIL-induced apoptosis through IRF-1. Eur. J. Biochem. 271, 4222–4228 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Putz, E. M., Gotthardt, D. & Sexl, V. STAT1-S727 - the license to kill. Oncoimmunology 3, e955441 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Früh, K. & Yang, Y. Antigen presentation by MHC class I and its regulation by interferon gamma. Curr. Opin. Immunol. 11, 76–81 (1999).

    Article  PubMed  Google Scholar 

  117. Steimle, V., Siegrist, C. A., Mottet, A., Lisowska-Grospierre, B. & Mach, B. Regulation of MHC class II expression by interferon-gamma mediated by the transactivator gene CIITA. Science 265, 106–109 (1994).

    Article  CAS  PubMed  Google Scholar 

  118. Meissner, T. B. et al. NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc. Natl Acad. Sci. USA 107, 13794–13799 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Li, J., Yang, Y., Inoue, H., Mori, M. & Akiyoshi, T. The expression of costimulatory molecules CD80 and CD86 in human carcinoma cell lines: its regulation by interferon gamma and interleukin-10. Cancer Immunol. Immunother. 43, 213–219 (1996).

    Article  CAS  PubMed  Google Scholar 

  120. Collins, A. V. et al. The interaction properties of costimulatory molecules revisited. Immunity 17, 201–210 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Pan, J. et al. Interferon-gamma is an autocrine mediator for dendritic cell maturation. Immunol. Lett. 94, 141–151 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Garris, C. S. et al. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity 49, 1148–1161.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jackson, S. W. et al. B cell IFN-γ receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6. J. Exp. Med. 213, 733–750 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Metzger, D. W. et al. Interleukin-12 acts as an adjuvant for humoral immunity through interferon-gamma-dependent and -independent mechanisms. Eur. J. Immunol. 27, 1958–1965 (1997).

    Article  CAS  PubMed  Google Scholar 

  125. Cillo, A. R. et al. Immune landscape of viral- and carcinogen-driven head and neck cancer. Immunity 52, 183–199.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bruno, T. C. New predictors for immunotherapy responses sharpen our view of the tumour microenvironment. Nature 577, 474–476 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wu, C. et al. IFN-γ primes macrophage activation by increasing phosphatase and tensin homolog via downregulation of miR-3473b. J. Immunol. 193, 3036–3044 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Sadlik, J. R. et al. Lymphocyte supernatant-induced human monocyte tumoricidal activity: dependence on the presence of gamma-interferon. Cancer Res. 45, 1940–1945 (1985).

    CAS  PubMed  Google Scholar 

  129. Haabeth, O. A. W. et al. Inflammation driven by tumour-specific Th1 cells protects against B-cell cancer. Nat. Commun. 2, 240 (2011).

    Article  PubMed  CAS  Google Scholar 

  130. Liu, M. et al. Targeting the IDO1 pathway in cancer: from bench to bedside. J. Hematol. Oncol. 11, 100 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Yan, Y. et al. IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. J. Immunol. 185, 5953–5961 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Vannini, F., Kashfi, K. & Nath, N. The dual role of iNOS in cancer. Redox Biol. 6, 334–343 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Grzywa, T. M. et al. Myeloid cell-derived arginase in cancer immune response. Front. Immunol. 11, 938 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Strieter, R. M. et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J. Biol. Chem. 270, 27348–27357 (1995).

    Article  CAS  PubMed  Google Scholar 

  135. Tokunaga, R. et al. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation - a target for novel cancer therapy. Cancer Treat. Rev. 63, 40–47 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Karin, N., Wildbaum, G. & Thelen, M. Biased signaling pathways via CXCR3 control the development and function of CD4+ T cell subsets. J. Leukoc. Biol. 99, 857–862 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Kärre, K., Ljunggren, H. G., Piontek, G. & Kiessling, R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319, 675–678 (1986).

    Article  PubMed  Google Scholar 

  138. Gao, J. et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 167, 397–404.e9 (2016). This study shows that copy-number loss of IFNγ pathway activating genes and amplification of IFNγ pathway inhibitors are associated with clinical resistance to anti-CTLA4 therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Benci, J. L. et al. Opposing functions of interferon coordinate adaptive and innate immune responses to cancer immune checkpoint blockade. Cell 178, 933–948.e14 (2019). This study shows adaptive immune resistance within the TME by which protumorigenic IFNγ signalling in tumour cells opposes antitumorigenic IFNγ signalling in immune cells to limit tumour killing by adaptive and innate immune cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Watcharanurak, K. et al. Effects of upregulated indoleamine 2, 3-dioxygenase 1 by interferon γ gene transfer on interferon γ-mediated antitumor activity. Gene Ther. 21, 794–801 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Kostourou, V. et al. The role of tumour-derived iNOS in tumour progression and angiogenesis. Br. J. Cancer 104, 83–90 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Teleanu, R. I., Chircov, C., Grumezescu, A. M. & Teleanu, D. M. Tumor angiogenesis and anti-angiogenic strategies for cancer treatment. J. Clin. Med. 9, 84 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  143. Kataru, R. P. et al. T lymphocytes negatively regulate lymph node lymphatic vessel formation. Immunity 34, 96–107 (2011).

    Article  CAS  PubMed  Google Scholar 

  144. Zampell, J. C. et al. Lymphatic function is regulated by a coordinated expression of lymphangiogenic and anti-lymphangiogenic cytokines. Am. J. Physiol. Cell Physiol. 302, C392–C404 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Lane, R. S. et al. IFNγ-activated dermal lymphatic vessels inhibit cytotoxic T cells in melanoma and inflamed skin. J. Exp. Med. 215, 3057–3074 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mondal, A. et al. IDO1 is an integral mediator of inflammatory neovascularization. EBioMedicine 14, 74–82 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Sun, T. et al. Inhibition of tumor angiogenesis by interferon-γ by suppression of tumor-associated macrophage differentiation. Oncol. Res. 21, 227–235 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Xu, H.-M. Th1 cytokine-based immunotherapy for cancer. Hepatobiliary Pancreat. Dis. Int. 13, 482–494 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Benmebarek, M.-R. et al. Killing mechanisms of chimeric antigen receptor (CAR) T cells. Int. J. Mol. Sci. 20, 1283 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  150. Müller, E. et al. Toll-like receptor ligands and interferon-γ synergize for induction of antitumor M1 macrophages. Front. Immunol. 8, 1383 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Ni, L. & Lu, J. Interferon gamma in cancer immunotherapy. Cancer Med. 7, 4509–4516 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Razaghi, A., Owens, L. & Heimann, K. Review of the recombinant human interferon gamma as an immunotherapeutic: Impacts of production platforms and glycosylation. J. Biotechnol. 240, 48–60 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. Gleave, M. E. et al. Interferon gamma-1b compared with placebo in metastatic renal-cell carcinoma. N. Engl. J. Med. 338, 1265–1271 (1998).

    Article  CAS  PubMed  Google Scholar 

  154. Ando, M. et al. Prevention of adverse events of interferon γ gene therapy by gene delivery of interferon γ-heparin-binding domain fusion protein in mice. Mol. Ther. Methods Clin. Dev. 1, 14023 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Hemmerle, T. & Neri, D. The dose-dependent tumor targeting of antibody-IFNγ fusion proteins reveals an unexpected receptor-trapping mechanism in vivo. Cancer Immunol. Res. 2, 559–567 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. Lee, C. S. et al. Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis. 4, 43–63 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Bourgeois-Daigneault, M.-C. et al. Oncolytic vesicular stomatitis virus expressing interferon-γ has enhanced therapeutic activity. Mol. Ther. Oncolytics 3, 16001 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Oh, E., Choi, I.-K., Hong, J. & Yun, C.-O. Oncolytic adenovirus coexpressing interleukin-12 and decorin overcomes Treg-mediated immunosuppression inducing potent antitumor effects in a weakly immunogenic tumor model. Oncotarget 8, 4730–4746 (2017).

    Article  PubMed  Google Scholar 

  159. Ando, M., Takahashi, Y., Nishikawa, M., Watanabe, Y. & Takakura, Y. Constant and steady transgene expression of interferon-γ by optimization of plasmid construct for safe and effective interferon-γ gene therapy. J. Gene Med. 14, 288–295 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Yuba, E. et al. pH-sensitive polymer-liposome-based antigen delivery systems potentiated with interferon-γ gene lipoplex for efficient cancer immunotherapy. Biomaterials 67, 214–224 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Mendoza, J. L. et al. Structure of the IFNγ receptor complex guides design of biased agonists. Nature 567, 56–60 (2019). The authors solve the crystal structure of the hexameric IFNγ–IFNGR1–IFNGR2 signalling complex, which is then used as a blueprint to develop antitumorigenic biased ligands that induce MHC class I expression but not PDL1 expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Taube, J. M. et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl Med. 4, 127ra37 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Gubin, M. M. et al. High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint cancer therapy. Cell 175, 1014–1030.e19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ayers, M. et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017). This study analyses RNA expression profiles of patients treated with anti-PD1 (pembrolizumab) and finds that IFNγ-responsive genes involved in antigen presentation, chemokine expression, cytotoxic activity and adaptive immune resistance were necessary for a clinical benefit from therapy.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Shin, D. S. et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 7, 188–201 (2017).

    Article  CAS  PubMed  Google Scholar 

  167. Peng, D. et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527, 249–253 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Li, J. et al. Epigenetic driver mutations in ARID1A shape cancer immune phenotype and immunotherapy. J. Clin. Invest. 130, 2712–2726 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wang, W. et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569, 270–274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhai, L. et al. IDO1 in cancer: a Gemini of immune checkpoints. Cell Mol. Immunol. 15, 447–457 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Oyler-Yaniv, J. et al. Catch and release of cytokines mediated by tumor phosphatidylserine converts transient exposure into long-lived inflammation. Mol. Cell 66, 635–647.e7 (2017). This study discovers that IFNγ is captured by phosphatidylserine on the surface of cells to mediate slow IFNγ release driving long-term transcriptional effects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Benci, J. L. et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167, 1540–1554.e12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Farrar, M. A. & Schreiber, R. D. The molecular cell biology of interferon-gamma and its receptor. Annu. Rev. Immunol. 11, 571–611 (1993).

    Article  CAS  PubMed  Google Scholar 

  174. Valente, G. et al. Distribution of interferon-gamma receptor in human tissues. Eur. J. Immunol. 22, 2403–2412 (1992).

    Article  CAS  PubMed  Google Scholar 

  175. Schmiedel, B. J. et al. Impact of genetic polymorphisms on human immune cell gene expression. Cell 175, 1701–1715.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Monaco, G. et al. RNA-seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types. Cell Rep. 26, 1627–1640.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ebensperger, C. et al. Genomic organization and promoter analysis of the gene Ifngr2 encoding the second chain of the mouse interferon-gamma receptor. Scand. J. Immunol. 44, 599–606 (1996).

    Article  CAS  PubMed  Google Scholar 

  178. Green, D. S., Young, H. A. & Valencia, J. C. Current prospects of type II interferon γ signaling and autoimmunity. J. Biol. Chem. 292, 13925–13933 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Larkin, J., Johnson, H. M. & Subramaniam, P. S. Differential nuclear localization of the IFNGR-1 and IFNGR-2 subunits of the IFN-gamma receptor complex following activation by IFN-gamma. J. Interferon Cytokine Res. 20, 565–576 (2000).

    Article  CAS  PubMed  Google Scholar 

  180. Gough, D. J., Levy, D. E., Johnstone, R. W. & Clarke, C. J. IFNgamma signaling — does it mean JAK-STAT? Cytokine Growth Factor Rev. 19, 383–394 (2008).

    Article  CAS  PubMed  Google Scholar 

  181. Melen, K. et al. Importin alpha nuclear localization signal binding sites for STAT1, STAT2, and influenza A virus nucleoprotein. J. Biol. Chem. 278, 28193–28200 (2003).

    Article  CAS  PubMed  Google Scholar 

  182. Decker, T., Kovarik, P. & Meinke, A. GAS elements: a few nucleotides with a major impact on cytokine-induced gene expression. J. Interferon Cytokine Res. 17, 121–134 (1997).

    Article  CAS  PubMed  Google Scholar 

  183. Ramana, C. V. et al. Stat1-independent regulation of gene expression in response to IFN-gamma. Proc. Natl Acad. Sci. USA 98, 6674–6679 (2001). This study determines that the IFNγ-induced immediate-early genes Myc, Jun and Jund, the transcription factor C/EBPβ and the chemokines CCL3 and CCL7 are induced via a non-canonical STAT1-independent mechanism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Stephens, J. M., Lumpkin, S. J. & Fishman, J. B. Activation of signal transducers and activators of transcription 1 and 3 by leukemia inhibitory factor, oncostatin-M, and interferon-gamma in adipocytes. J. Biol. Chem. 273, 31408–31416 (1998).

    Article  CAS  PubMed  Google Scholar 

  185. Greenlund, A. C. et al. STAT recruitment by tyrosine-phosphorylated cytokine receptors: an ordered reversible affinity-driven process. Immunity 2, 677–687 (1995).

    Article  CAS  PubMed  Google Scholar 

  186. Qi, Y. et al. Elucidating the crosstalk mechanism between IFN-gamma and IL-6 via mathematical modelling. BMC Bioinformatics 14, 41 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Qing, Y., Costa-Pereira, A. P., Watling, D. & Stark, G. R. Role of tyrosine 441 of interferon-gamma receptor subunit 1 in SOCS-1-mediated attenuation of STAT1 activation. J. Biol. Chem. 280, 1849–1853 (2005).

    Article  CAS  PubMed  Google Scholar 

  188. Gresser, I., Tovey, M. G., Maury, C. & Chouroulinkov, I. Lethality of interferon preparations for newborn mice. Nature 258, 76–78 (1975).

    Article  CAS  PubMed  Google Scholar 

  189. Madonna, S. et al. The IFN-gamma-dependent suppressor of cytokine signaling 1 promoter activity is positively regulated by IFN regulatory factor-1 and Sp1 but repressed by growth factor independence-1b and Krüppel-like factor-4, and it is dysregulated in psoriatic keratinocytes. J. Immunol. 185, 2467–2481 (2010).

    Article  CAS  PubMed  Google Scholar 

  190. Liau, N. P. D. et al. The molecular basis of JAK/STAT inhibition by SOCS1. Nat. Commun. 9, 1558 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Eshhar, Z., Waks, T., Gross, G. & Schindler, D. G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl Acad. Sci. USA 90, 720–724 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Maude, S. L., Teachey, D. T., Porter, D. L. & Grupp, S. A. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood 125, 4017–4023 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Mauldin, I. S. et al. Intratumoral interferon-gamma increases chemokine production but fails to increase T cell infiltration of human melanoma metastases. Cancer Immunol. Immunother. 65, 1189–1199 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Strauss, J. et al. First-in-human phase i trial of a tumor-targeted cytokine (NHS-IL12) in subjects with metastatic solid tumors. Clin. Cancer Res. 25, 99–109 (2019).

    Article  CAS  PubMed  Google Scholar 

  195. Lyerly, H. K., Osada, T. & Hartman, Z. C. Right time and place for IL12: targeted delivery stimulates immune therapy. Clin. Cancer Res. 25, 9–11 (2019).

    Article  CAS  PubMed  Google Scholar 

  196. Chen, F. et al. Neoantigen identification strategies enable personalized immunotherapy in refractory solid tumors. J. Clin. Invest. 129, 2056–2070 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Hollingsworth, R. E. & Jansen, K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines 4, 7 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Kawai, T. & Akira, S. TLR signaling. Cell Death Differ. 13, 816–825 (2006).

    Article  CAS  PubMed  Google Scholar 

  199. Hart, O. M., Athie-Morales, V., O’Connor, G. M. & Gardiner, C. M. TLR7/8-mediated activation of human NK cells results in accessory cell-dependent IFN-gamma production. J. Immunol. 175, 1636–1642 (2005).

    Article  CAS  PubMed  Google Scholar 

  200. Zobywalski, A. et al. Generation of clinical grade dendritic cells with capacity to produce biologically active IL-12p70. J. Transl. Med. 5, 18 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Wagner, T. L. et al. Modulation of TH1 and TH2 cytokine production with the immune response modifiers, R-848 and imiquimod. Cell Immunol. 191, 10–19 (1999).

    Article  CAS  PubMed  Google Scholar 

  202. Rodell, C. B. et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2, 578–588 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Chuang, Y.-C. et al. Adjuvant effect of Toll-like receptor 9 activation on cancer immunotherapy using checkpoint blockade. Front. Immunol. 11, 1075 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Zhang, H. et al. Development of thermosensitive resiquimod-loaded liposomes for enhanced cancer immunotherapy. J. Control. Release 330, 1080–1094 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank everyone in the Vignali laboratory for all their constructive comments and advice. This work was supported by the US National Institutes of Health (F32 CA247004-01 and T32 CA082084 to A.M.G.; P01 AI108545, R01 CA203689 and P30 CA047904 to D.A.A.V.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Dario A. A. Vignali.

Ethics declarations

Competing interests

D.A.A.V. is a co-founder and shareholder of Novasenta and Tizona, a shareholder of Oncorus and Werewolf, has patents licensed and receives royalties from Astellas and Bristol Myers Squibb, is a scientific advisory board member for Tizona, Werewolf, F-Star and Bicara, is a consultant for Astellas, Bristol Myers Squibb, Almirall and Incyte, and receives research funding from Bristol Myers Squibb, Astellas and Novasenta. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks A. Ribas and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Programmed cell death 1 ligand 1

(PDL1). A ligand that binds to programmed cell death 1 (PD1) on T cells to inhibit their activation, proliferation and cytokine production. PDL1 is also known as CD274 and B7-H1, and PDL2 is also known as CD273 or B7-C.

Epigenetic regulation

Control of gene expression through phenotypic changes that do not alter the DNA sequence. Examples include DNA methylation, histone modifications, microRNAs, long non-coding RNAs and nucleosome positioning.

Invariant NK T cells

(iNKT cells). Innate-like T cells that express a T cell receptor α-chain that recognizes lipid antigens presented by the non-classical MHC molecule CD1d expressed on dendritic cells.

γδ T cells

T cells that express T cell receptor γ and δ chains and represent 1–4% of the T cell population. They produce interferon-γ (IFNγ) rapidly following activation in a non-MHC-restricted manner by tumour-derived lipids, glycoproteins and phosphorus-containing compounds.

Adaptive immune resistance

The upregulation of immunosuppressive mechanisms in response to chronic proinflammatory stimuli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gocher, A.M., Workman, C.J. & Vignali, D.A.A. Interferon-γ: teammate or opponent in the tumour microenvironment?. Nat Rev Immunol 22, 158–172 (2022). https://doi.org/10.1038/s41577-021-00566-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-021-00566-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer