Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-temperature superfluorescence in methyl ammonium lead iodide

Abstract

Light–matter interactions can create and manipulate collective many-body phases in solids1,2,3, which are promising for the realization of emerging quantum applications. However, in most cases, these collective quantum states are fragile, with a short decoherence and dephasing time, limiting their existence to precision tailored structures under delicate conditions such as cryogenic temperatures and/or high magnetic fields. In this work, we discovered that the archetypal hybrid perovskite, MAPbI3 thin film, exhibits such a collective coherent quantum many-body phase, namely superfluorescence, at 78 K and above. Pulsed laser excitation first creates a population of high-energy electron–hole pairs, which quickly relax to lower energy domains and then develop a macroscopic quantum coherence through spontaneous synchronization. The excitation fluence dependence of the spectroscopic features and the population kinetics in such films unambiguously confirm all the well-known characteristics of superfluorescence. These results show that the creation and manipulation of collective coherent states in hybrid perovskites can be used as the basic building blocks for quantum applications4,5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Graphic representation of SF evolution.
Fig. 2: Optical measurements of MAPbI3 thin films.
Fig. 3: Time-resolved PL spectra and population dynamics at different excitation fluences.
Fig. 4: Direction-dependent PL experiment.

Similar content being viewed by others

Data availability

Data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Torchinsky, D. H., Mahmood, F., Bollinger, A. T., Božović, I. & Gedik, N. Fluctuating charge-density waves in a cuprate superconductor. Nat. Mater. 12, 387–391 (2013).

    Article  Google Scholar 

  2. Li, T. et al. Femtosecond switching of magnetism via strongly correlated spin–charge quantum excitations. Nature 496, 69–73 (2013).

    Article  Google Scholar 

  3. Keeling, J., Marchetti, F., Szymańska, M. & Littlewood, P. Collective coherence in planar semiconductor microcavities. Semicond. Sci. Technol. 22, R1–R26 (2007).

    Article  Google Scholar 

  4. Bergmann, M. & Gühne, O. Entanglement criteria for Dicke states. J. Phys. A 46, 385304 (2013).

    Article  MathSciNet  Google Scholar 

  5. Tóth, G. & Apellaniz, I. Quantum metrology from a quantum information science perspective. J. Phys. A 47, 424006 (2014).

    Article  MathSciNet  Google Scholar 

  6. Whitfield, J. Synchronized swinging. Nature https://doi.org/10.1038/news020218-16 (2002).

  7. Eastham, P. R. & Rosenow, B. in Universal Themes of Bose–Einstein Condensation (eds Proukakis, N. P. et al.) 462–476 (Cambridge Univ. Press, 2017).

  8. Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    Article  Google Scholar 

  9. Li, X. et al. Observation of Dicke cooperativity in magnetic interactions. Science 361, 794–797 (2018).

    Article  MathSciNet  Google Scholar 

  10. Scully, M. O. & Svidzinsky, A. A. The super of superradiance. Science 325, 1510–1511 (2009).

    Article  Google Scholar 

  11. Thompson, J. V. et al. Pulsed cooperative backward emissions from non-degenerate atomic transitions in sodium. New J. Phys. 16, 103017 (2014).

    Article  Google Scholar 

  12. Skribanowitz, N., Herman, I. P., MacGillivray, J. C. & Feld, M. S. Observation of Dicke superradiance in optically pumped HF gas. Phys. Rev. Lett. 30, 309–312 (1973).

    Article  Google Scholar 

  13. Ariunbold, G. O. et al. Observation of picosecond superfluorescent pulses in rubidium atomic vapor pumped by 100-fs laser pulses. Phys. Rev. A 82, 043421 (2010).

    Article  Google Scholar 

  14. Florian, R., Schwan, L. O. & Schmid, D. Two-color superfluorescence of O2 centers in KCl. J. Lumin. 31, 169–171 (1984).

    Article  Google Scholar 

  15. Miyajima, K., Kumagai, Y. & Ishikawa, A. Ultrashort radiation of biexcitonic superfluorescence from high-density assembly of semiconductor quantum dots. J. Phys. Chem. C 121, 27751–27757 (2017).

    Article  Google Scholar 

  16. Dai, D. & Monkman, A. Observation of superfluorescence from a quantum ensemble of coherent excitons in a ZnTe crystal: evidence for spontaneous Bose–Einstein condensation of excitons. Phys. Rev. B 84, 115206 (2011).

    Article  Google Scholar 

  17. Noe, G. T. II et al. Giant superfluorescent bursts from a semiconductor magneto-plasma. Nat. Phys. 8, 219–224 (2012).

    Article  Google Scholar 

  18. Rainò, G. et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 563, 671–675 (2018).

    Article  Google Scholar 

  19. Benedict, M. G. Super-Radiance: Multiatomic Coherent Emission (CRC Press, 1996).

  20. Burnham, D. C. & Chiao, R. Y. Coherent resonance fluorescence excited by short light pulses. Phys. Rev. 188, 667–675 (1969).

    Article  Google Scholar 

  21. Gross, M. & Haroche, S. Superradiance: an essay on the theory of collective spontaneous emission. Phys. Rep. 93, 301–396 (1982).

    Article  Google Scholar 

  22. Bonifacio, R. & Lugiato, L. Cooperative radiation processes in two-level systems: superfluorescence. Phys. Rev. A 11, 1507–1521 (1975).

    Article  Google Scholar 

  23. Osherov, A. et al. The impact of phase retention on the structural and optoelectronic properties of metal halide perovskites. Adv. Mater. 28, 10757–10763 (2016).

    Article  Google Scholar 

  24. Jia, Y., Kerner, R. A., Grede, A. J., Rand, B. P. & Giebink, N. C. Continuous-wave lasing in an organic–inorganic lead halide perovskite semiconductor. Nat. Photon. 11, 784–788 (2017).

    Article  Google Scholar 

  25. Chuliá-Jordán, R. et al. Inhibition of light emission from the metastable tetragonal phase at low temperatures in island-like films of lead iodide perovskites. Nanoscale 11, 22378–22386 (2019).

    Article  Google Scholar 

  26. Phuong, L. Q. et al. Free carriers versus excitons in CH3NH3PbI3 perovskite thin films at low temperatures: charge transfer from the orthorhombic phase to the tetragonal phase. J. Phys. Chem. Lett. 7, 2316–2321 (2016).

    Article  Google Scholar 

  27. Milot, R. L., Eperon, G. E., Snaith, H. J., Johnston, M. B. & Herz, L. M. Temperature‐dependent charge‐carrier dynamics in CH3NH3PbI3 perovskite thin films. Adv. Funct. Mater. 25, 6218–6227 (2015).

    Article  Google Scholar 

  28. Malcuit, M. S., Maki, J. J., Simkin, D. J. & Boyd, R. W. Transition from superfluorescence to amplified spontaneous emission. Phys. Rev. Lett. 59, 1189–1192 (1987).

    Article  Google Scholar 

  29. Siegman, A. E. Lasers (University Science Books, 1986).

  30. Miyata, K. et al. Large polarons in lead halide perovskites. Sci. Adv. 3, e1701217 (2017).

    Article  Google Scholar 

  31. Jho, Y. et al. Cooperative recombination of a quantized high-density electron–hole plasma in semiconductor quantum wells. Phys. Rev. Lett. 96, 237401 (2006).

    Article  Google Scholar 

  32. Ariunbold, G. O., Sautenkov, V. A., Rostovtsev, Y. V. & Scully, M. O. Ultrafast laser control of backward superfluorescence towards standoff sensing. Appl. Phys. Lett. 104, 021114 (2014).

    Article  Google Scholar 

  33. Kuan, Y.-H. & Liao, W.-T. Transition between amplified spontaneous emission and superfluorescence in a longitudinally pumped medium by an X-ray free-electron-laser pulse. Phys. Rev. A 101, 023836 (2020).

    Article  Google Scholar 

  34. Vardeny, Z. V. Ultrafast Dynamics and Laser Action of Organic Semiconductors (CRC Press, 2009).

  35. Thouin, F. et al. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nat. Mater. 18, 349–356 (2019).

    Article  Google Scholar 

  36. Ishizaki, A. & Fleming, G. R. Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proc. Natl Acad. Sci. USA 106, 17255–17260 (2009).

    Article  Google Scholar 

  37. Wang, Z. et al. Controllable switching between superradiant and subradiant states in a 10-qubit superconducting circuit. Phys. Rev. Lett. 124, 013601 (2020).

    Article  Google Scholar 

  38. Ariunbold, G. O., Sautenkov, V. A. & Scully, M. O. Temporal coherent control of superfluorescent pulses. Opt. Lett. 37, 2400–2402 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge helpful discussions with J. Thomas (NC State University), D. Aspnes (NC State University) and V. Temnov (IMMM Le Mans). We also acknowledge support from the NCSU Imaging and Kinetic Spectroscopy facility and technical support from E. Danilov for the time-resolved absorption experiment. K.G. and F.S. acknowledge support from the National Science Foundation Designing Materials to Revolutionize and Engineer our Future programme (grant 1729383) and the NC State University Research and Innovation Seed Funding (RISF).

Author information

Authors and Affiliations

Authors

Contributions

G.F. and M.B. performed the PL and TRPL measurements and pump–probe experiments and analysed the results. D.S. assisted with the pump–probe experiments and H.A. provided help with TRPL experiments. A.B. performed steady-state absorption and PL experiments. L.L., Q.D. and F.S. provided the samples. K.G. conceived the research problems and coordinated the studies. K.G. drafted the manuscript with the help of G.F. and M.B. All authors helped with editing the manuscript.

Corresponding author

Correspondence to Kenan Gundogdu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Gombojav Ariunbold and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion and Figs. 1–15.

Source data

Source Data Fig. 2

Source Data for graphs.

Source Data Fig. 3

Source Data for graphs.

Source Data Fig. 4

Source Data for graphs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Findik, G., Biliroglu, M., Seyitliyev, D. et al. High-temperature superfluorescence in methyl ammonium lead iodide. Nat. Photon. 15, 676–680 (2021). https://doi.org/10.1038/s41566-021-00830-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00830-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing