Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Central nervous system regulation of organismal energy and glucose homeostasis

A Publisher Correction to this article was published on 29 June 2021

This article has been updated

Abstract

Growing evidence implicates the brain in the regulation of both immediate fuel availability (for example, circulating glucose) and long-term energy stores (that is, adipose tissue mass). Rather than viewing the adipose tissue and glucose control systems separately, we suggest that the brain systems that control them are components of a larger, highly integrated, ‘fuel homeostasis’ control system. This conceptual framework, along with new insights into the organization and function of distinct neuronal systems, provides a context within which to understand how metabolic homeostasis is achieved in both basal and postprandial states. We also review evidence that dysfunction of the central fuel homeostasis system contributes to the close association between obesity and type 2 diabetes, with the goal of identifying more effective treatment options for these common metabolic disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neurocircuits in the hypothalamus and hindbrain that control fuel homeostasis.
Fig. 2: Integrated CNS responses to fuel depletion or excess.
Fig. 3: Proposed model describing a vicious cycle between brain and beta cell dysfunction in the pathogenesis of T2D.

Similar content being viewed by others

Change history

References

  1. Beck, B. & Richy, S. Dietary modulation of ghrelin and leptin and gorging behavior after weight loss in the obese Zucker rat. J. Endocrinol. 202, 29–34 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Dulloo, A. G. & Calokatisa, R. Adaptation to low calorie intake in obese mice: contribution of a metabolic component to diminished energy expenditures during and after weight loss. Int. J. Obes. 15, 7–16 (1991).

    CAS  PubMed  Google Scholar 

  3. MacLean, P. S. et al. Peripheral metabolic responses to prolonged weight reduction that promote rapid, efficient regain in obesity-prone rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R1577–R1588 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Melby, C. L., Paris, H. L., Foright, R. M. & Peth, J. Attenuating the biologic drive for weight regain following weight loss: must what goes down always go back up? Nutrients 9, 468 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  5. Morton, G. J., Cummings, D. E., Baskin, D. G., Barsh, G. S. & Schwartz, M. W. Central nervous system control of food intake and body weight. Nature 443, 289–295 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Williams, G. et al. The hypothalamus and the control of energy homeostasis different circuits, different purposes. Physiol. Behav. 74, 683–701 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Alonge, K. M., D’Alessio, D. A. & Schwartz, M. W. Brain control of blood glucose levels: implications for the pathogenesis of type 2 diabetes. Diabetologia https://doi.org/10.1007/s00125-020-05293-3 (2020).

  8. Rickels, M. R. & Robertson, R. P. Pancreatic islet transplantation in humans: recent progress and future directions. Endocr. Rev. 40, 631–668 (2019).

    Article  PubMed  Google Scholar 

  9. Brown, J. M., Scarlett, J. M. & Schwartz, M. W. Rethinking the role of the brain in glucose homeostasis and diabetes pathogenesis. J. Clin. Invest. 129, 3035–3037 (2019).

  10. Faber, C. L., Deem, J. D., Campos, C. A., Taborsky, G. J. & Morton, G. J. CNS control of the endocrine pancreas. Diabetologia 63, 2086–2094 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Smyth, S. & Heron, A. Diabetes and obesity: the twin epidemics. Nat. Med. 12, 75–80 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Considine, R. V. et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Frederich, R. C. et al. Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat. Med. 1, 1311–1314 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Hummel, K. P., Dickie, M. M. & Coleman, D. L. Diabetes, a new mutation in the mouse. Science 153, 1127–1128 (1966).

    Article  CAS  PubMed  Google Scholar 

  15. Tartaglia, L. A. et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 83, 1263–1271 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Ingalls, A. M., Dickie, M. M. & Snell, G. D. Obese, a new mutation in the house mouse. J. Hered. 41, 317–318 (1950).

    Article  CAS  PubMed  Google Scholar 

  17. Kennedy, G. C. The role of depot fat in the hypothalamic control of food intake in the rat. Proc. R. Soc. Lond. B Biol. Sci. 140, 578–596 (1953).

    Article  CAS  PubMed  Google Scholar 

  18. Butler, P. C. et al. Effects of meal ingestion on plasma amylin concentration in NIDDM and nondiabetic humans. Diabetes 39, 752–756 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Elliott, R. M. et al. Glucagon-like peptide-1(7–36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J. Endocrinol. 138, 159–166 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. GIBBS, J., YOUNG, R. C. & SMITH, G. P. Cholecystokinin elicits satiety in rats with open gastric fistulas. Nature 245, 323–325 (1973).

    Article  CAS  PubMed  Google Scholar 

  21. Strubbe, J. & Steffens, A. Rapid insulin release after ingestion of a meal in the unanesthetized rat. Am. J. Physiol. 229, 1019–1022 (1975).

    Article  CAS  PubMed  Google Scholar 

  22. Berthoud, H.-R., Lynn, P. A. & Blackshaw, L. A. Vagal and spinal mechanosensors in the rat stomach and colon have multiple receptive fields. Am. J. Physiol. 280, R1371–R1381 (2001).

    CAS  Google Scholar 

  23. Phillips, R. J. & Powley, T. L. Tension and stretch receptors in gastrointestinal smooth muscle: re-evaluating vagal mechanoreceptor electrophysiology. Brain Res. Rev. 34, 1–26 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Frecka, J. M. & Mattes, R. D. Possible entrainment of ghrelin to habitual meal patterns in humans. Am. J. Physiol. 294, G699–G707 (2008).

    CAS  Google Scholar 

  25. Wren, A. M. et al. Ghrelin enhances appetite and increases food intake in humans. J. Clin. Endocrinol. Metab. 86, 5992 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Johnen, H. et al. Tumor-induced anorexia and weight loss are mediated by the TGF-β superfamily cytokine MIC-1. Nat. Med. 13, 1333–1340 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Tsai, V. W. W., Husaini, Y., Sainsbury, A., Brown, D. A. & Breit, S. N. The MIC-1/GDF15-GFRAL pathway in energy homeostasis: implications for obesity, cachexia and other associated diseases. Cell Metab. 28, 353–368 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Borner, T. et al. GDF15 induces anorexia through nausea and emesis. Cell Metab. https://doi.org/10.1016/j.cmet.2019.12.004 (2020).

  29. Kleinert, M. et al. Exercise increases circulating GDF15 in humans. Mol. Metab. 9, 187–191 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Patel, S. et al. GDF15 provides an endocrine signal of nutritional stress in mice and humans. Cell Metab. 29, 707–718 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Emmerson, P. J. et al. The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat. Med. 23, 1215–1219 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Hsu, J.-Y. et al. Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature 550, 255–259 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Mullican, S. E. et al. GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat. Med. 23, 1150–1157 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Yang, L. et al. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat. Med. 23, 1158–1166 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Wischhusen, J., Melero, I. & Fridman, W. H. Growth/differentiation factor-15 (GDF-15): from biomarker to novel targetable immune checkpoint. Front. Immunol. 11, 951 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Celi, F. S. et al. Minimal changes in environmental temperature result in a significant increase in energy expenditure and changes in the hormonal homeostasis in healthy adults. Eur. J. Endocrinol. 163, 863–872 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Langeveld, M. et al. Mild cold effects on hunger, food intake, satiety and skin temperature in humans. Endocr. Connect. 5, 65–73 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Macari, M., Dauncey, M. J. & Ingram, D. L. Changes in food intake in response to alterations in the ambient temperature: modifications by previous thermal and nutritional experience. Pflügers Arch. 396, 231–237 (1983).

    Article  CAS  PubMed  Google Scholar 

  39. Seeley, R. J. et al. Behavioral, endocrine, and hypothalamic responses to involuntary overfeeding. Am. J. Physiol. 271, R819–R823 (1996).

    CAS  PubMed  Google Scholar 

  40. Ravussin, Y. et al. Evidence for a non-leptin system that defends against weight gain in overfeeding. Cell Metab. 28, 289–299 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. White, C. L., Purpera, M. N., Ballard, K. & Morrison, C. D. Decreased food intake following overfeeding involves leptin-dependent and leptin-independent mechanisms. Physiol. Behav. 100, 408–416 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Coleman, D. L. Effects of parabiosis of obese with diabetes and normal mice. Diabetologia 9, 294–298 (1973).

    Article  CAS  PubMed  Google Scholar 

  43. Coleman, D. L. Obese and diabetes: two mutant genes causing diabetes–obesity syndromes in mice. Diabetologia 14, 141–148 (1978).

    Article  CAS  PubMed  Google Scholar 

  44. D’Alessio, D. A., Kieffer, T. J., Taborsky, G. J. & Havel, P. J. Activation of the parasympathetic nervous system is necessary for normal meal-induced insulin secretion in rhesus macaques. J. Clin. Endocrinol. Metab. 86, 1253–1259 (2001).

    Article  PubMed  Google Scholar 

  45. Havel, P. J., Veith, R. C., Dunning, B. E. & Taborsky, G. J. Pancreatic noradrenergic nerves are activated by neuroglucopenia but not by hypotension or hypoxia in the dog. Evidence for stress-specific and regionally selective activation of the sympathetic nervous system. J. Clin. Invest. 82, 1538–1545 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lerner, R. L. & Porte, D. Studies of secretin-stimulated insulin responses in man. J. Clin. Invest. 51, 2205–2210 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rosario, W. et al. The brain-to-pancreatic islet neuronal map reveals differential glucose regulation from distinct hypothalamic regions. Diabetes 65, 2711–2723 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Thorens, B. Neural regulation of pancreatic islet cell mass and function. Diabetes Obes. Metab. 16, 87–95 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Berthoud, H. R., Bereiter, D. A., Trimble, E. R., Siegel, E. G. & Jeanrenaud, B. Cephalic phase, reflex insulin secretion neuroanatomical and physiological characterization. Diabetologia 20, 393–401 (1981).

    Article  CAS  PubMed  Google Scholar 

  50. Teff, K. L. How neural mediation of anticipatory and compensatory insulin release helps us tolerate food. Physiol. Behav. 103, 44–50 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ahrén, B. Autonomic regulation of islet hormone secretion–implications for health and disease. Diabetologia 43, 393–410 (2000).

    Article  PubMed  Google Scholar 

  52. Brochu, M. et al. Visceral adipose tissue is an independent correlate of glucose disposal in older obese postmenopausal women. J. Clin. Endocrinol. Metab. 85, 2378–2384 (2000).

    CAS  PubMed  Google Scholar 

  53. Kim, K. & Park, S. M. Association of muscle mass and fat mass with insulin resistance and the prevalence of metabolic syndrome in Korean adults: a cross-sectional study. Sci. Rep. 8, 2703 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Faerch, K. et al. Natural history of insulin sensitivity and insulin secretion in the progression from normal glucose tolerance to impaired fasting glycemia and impaired glucose tolerance: the Inter99 study. Diabetes Care 32, 439–444 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Retnakaran, R. et al. Hyperbolic relationship between insulin secretion and sensitivity on oral glucose tolerance test. Obesity 16, 1901–1907 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Walton, C., Godsland, I. F., Proudler, A. J., Felton, C. V. & Wynn, V. Effect of body mass index and fat distribution on insulin sensitivity, secretion, and clearance in nonobese healthy men. J. Clin. Endocrinol. Metab. 75, 170–175 (1992).

    CAS  PubMed  Google Scholar 

  57. Morton, G. J. et al. Evidence that the sympathetic nervous system elicits rapid, coordinated, and reciprocal adjustments of insulin secretion and insulin sensitivity during cold exposure. Diabetes 66, 823–834 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Muta, K. et al. Glucoregulatory responses to hypothalamic preoptic area cooling. Brain Res. 1710, 136–145 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dhillon, H. et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 49, 191–203 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Flak, J. N. et al. Ventromedial hypothalamic nucleus neuronal subset regulates blood glucose independently of insulin. J. Clin. Invest. 130, 2943–2952 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. German, J. P. et al. Leptin activates a novel CNS mechanism for insulin-independent normalization of severe diabetic hyperglycemia. Endocrinology 152, 394–404 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Meek, T. H. et al. Leptin action in the ventromedial hypothalamic nucleus is sufficient, but not necessary, to normalize diabetic hyperglycemia. Endocrinology 154, 3067–3076 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Balland, E. et al. Leptin signaling in the arcuate nucleus reduces insulin’s capacity to suppress hepatic glucose production in obese Mice. Cell Rep. 26, 346–355 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Hashikawa, K. et al. Esr1+ cells in the ventromedial hypothalamus control female aggression. Nat. Neurosci. 20, 1580–1590 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Krause, W. C. & Ingraham, H. A. Origins and functions of the ventrolateral VMH: a complex neuronal cluster orchestrating sex differences in metabolism and behavior. in Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity (ed. Mauvais-Jarvis, F.) 1043, 199–213 (Springer International Publishing, 2017).

  66. Vander Tuig, J. G., Knehans, A. W. & Romsos, D. R. Reduced sympathetic nervous system activity in rats with ventromedial hypothalamic lesions. Life Sci. 30, 913–920 (1982).

    Article  Google Scholar 

  67. Kunwar, P. S. et al. Ventromedial hypothalamic neurons control a defensive emotion state. eLife 4, e06633 (2015).

    Article  PubMed Central  Google Scholar 

  68. Minokoshi, Y., Haque, M. S. & Shimazu, T. Microinjection of leptin into the ventromedial hypothalamus increases glucose uptake in peripheral tissues in rats. Diabetes 48, 287–291 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Toda, C. et al. Extracellular signal-regulated kinase in the ventromedial hypothalamus mediates leptin-induced glucose uptake in red-type skeletal muscle. Diabetes 62, 2295–2307 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Noble, E. E., Billington, C. J., Kotz, C. M. & Wang, C. Oxytocin in the ventromedial hypothalamic nucleus reduces feeding and acutely increases energy expenditure. Am. J. Physiol. 307, R737–R745 (2014).

    CAS  Google Scholar 

  71. Gavini, C. K., Jones, W. C. & Novak, C. M. Ventromedial hypothalamic melanocortin receptor activation: regulation of activity energy expenditure and skeletal muscle thermogenesis: VMH and skeletal muscle thermogenesis. J. Physiol. 594, 5285–5301 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Meek, T. H. et al. Functional identification of a neurocircuit regulating blood glucose. Proc. Natl Acad. Sci. USA 113, E2073–E2082 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Borg, W. P., Sherwin, R. S., During, M. J., Borg, M. A. & Shulman, G. I. Local ventromedial hypothalamus glucopenia triggers counterregulatory hormone release. Diabetes 44, 180–184 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Furigo, I. C. et al. Growth hormone enhances the recovery of hypoglycemia via ventromedial hypothalamic neurons. FASEB J. https://doi.org/10.1096/fj.201901315R (2019).

  75. Garfield, A. S. et al. A parabrachial-hypothalamic cholecystokinin neurocircuit controls counterregulatory responses to hypoglycemia. Cell Metab. 20, 1030–1037 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sabatini, P. V. et al. tTARGIT AAVs mediate the sensitive and flexible manipulation of intersectional neuronal populations in mice. eLife 10, e66835 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Burdakov, D. & González, J. A. Physiological functions of glucose-inhibited neurones. Acta Physiol. 195, 71–78 (2009).

    Article  CAS  Google Scholar 

  78. Shimazu, T. & Minokoshi, Y. Systemic glucoregulation by glucose-sensing neurons in the ventromedial hypothalamic nucleus (VMH). J. Endocr. Soc. 1, 449–459 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hirschberg, P. R., Sarkar, P., Teegala, S. B. & Routh, V. H. Ventromedial hypothalamus glucose‐inhibited neurones: A role in glucose and energy homeostasis? J. Neuroendocrinol. 32, e12773 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Flak, J. N. et al. Leptin-inhibited PBN neurons enhance responses to hypoglycemia in negative energy balance. Nat. Neurosci. 17, 1744–1750 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dunn-Meynell, A. A. et al. Relationship among brain and blood glucose levels and spontaneous and glucoprivic feeding. J. Neurosci. 29, 7015–7022 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fioramonti, X., Chrétien, C., Leloup, C. & Pénicaud, L. Recent advances in the cellular and molecular mechanisms of hypothalamic neuronal glucose detection. Front. Physiol. 8, 875 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hwang, J. J. et al. Blunted rise in brain glucose levels during hyperglycemia in adults with obesity and T2DM. JCI Insight 2, e95913 (2017).

    Article  PubMed Central  Google Scholar 

  84. Williams, E. K. et al. Sensory neurons that detect stretch and nutrients in the digestive system. Cell 166, 209–221 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Donovan, C. M. Portal vein glucose sensing. Diabetes Nutr. Metab. 15, 308–312 (2002).

    CAS  PubMed  Google Scholar 

  86. Chan, O. & Sherwin, R. S. Is there cross talk between portal and hypothalamic glucose-sensing circuits? Diabetes 63, 2617–2619 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jokiaho, A. J., Donovan, C. M. & Watts, A. G. The rate of fall of blood glucose determines the necessity of forebrain-projecting catecholaminergic neurons for male rat sympathoadrenal responses. Diabetes 63, 2854–2865 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Campfield, L. A., Smith, F. J., Guisez, Y., Devos, R. & Burn, P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269, 546–549 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Schwartz, M. W. et al. Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice. Diabetes 45, 531–535 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. van den Hoek, A. M. et al. Leptin deficiency per se dictates body composition and insulin action in ob/ob mice. J. Neuroendocrinol. 20, 120–127 (2008).

    Article  PubMed  CAS  Google Scholar 

  91. Ahima, R. S. et al. Role of leptin in the neuroendocrine response to fasting. Nature 382, 250–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Schwartz, M. W., Seeley, R. J., Campfield, L. A., Burn, P. & Baskin, D. G. Identification of targets of leptin action in rat hypothalamus. J. Clin. Invest. 98, 1101–1106 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ahrén, B., Månsson, S., Gingerich, R. L. & Havel, P. J. Regulation of plasma leptin in mice: influence of age, high-fat diet, and fasting. Am. J. Physiol. 273, R113–R120 (1997).

    PubMed  Google Scholar 

  94. Clément, K. et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392, 398–401 (1998).

    Article  PubMed  Google Scholar 

  95. Montague, C. T. et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387, 903–908 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  PubMed  Google Scholar 

  97. D’souza, A. M., Asadi, A., Johnson, J. D., Covey, S. D. & Kieffer, T. J. Leptin deficiency in rats results in hyperinsulinemia and impaired glucose homeostasis. Endocrinology 155, 1268–1279 (2014).

    Article  PubMed  CAS  Google Scholar 

  98. Pelleymounter, M. A. et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269, 540–543 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Oral, E. A. et al. Leptin-replacement therapy for lipodystrophy. N. Engl. J. Med. 346, 570–578 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Petersen, K. F. et al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J. Clin. Invest. 109, 1345–1350 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shimomura, I., Hammer, R. E., Ikemoto, S., Brown, M. S. & Goldstein, J. L. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 401, 73–76 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Havel, P. J. et al. Marked and rapid decreases of circulating leptin in streptozotocin diabetic rats: reversal by insulin. Am. J. Physiol. 274, R1482–R1491 (1998).

    CAS  PubMed  Google Scholar 

  103. Chinookoswong, N., Wang, J. L. & Shi, Z. Q. Leptin restores euglycemia and normalizes glucose turnover in insulin-deficient diabetes in the rat. Diabetes 48, 1487–1492 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. German, J. P. et al. Leptin deficiency causes insulin resistance induced by uncontrolled diabetes. Diabetes 59, 1626–1634 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hidaka, S. et al. Chronic central leptin infusion restores hyperglycemia independent of food intake and insulin level in streptozotocin-induced diabetic rats. FASEB J. 16, 509–518 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Fujikawa, T. et al. Leptin engages a hypothalamic neurocircuitry to permit survival in the absence of insulin. Cell Metab. 18, 431–444 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fujikawa, T., Chuang, J.-C., Sakata, I., Ramadori, G. & Coppari, R. Leptin therapy improves insulin-deficient type 1 diabetes by CNS-dependent mechanisms in mice. Proc. Natl Acad. Sci. USA 107, 17391–17396 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Morton, G. J., Meek, T. H., Matsen, M. E. & Schwartz, M. W. Evidence against hypothalamic–pituitary–adrenal axis suppression in the antidiabetic action of leptin. J. Clin. Invest. 125, 4587–4591 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Perry, R. J. et al. Leptin reverses diabetes by suppression of the hypothalamic–pituitary–adrenal axis. Nat. Med. 20, 759–763 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Alix, P. M., Guebre-Egziabher, F. & Soulage, C. O. Leptin as an uremic toxin: deleterious role of leptin in chronic kidney disease. Biochimie 105, 12–21 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Mittendorfer, B. et al. Recombinant human leptin treatment does not improve insulin action in obese subjects with type 2 diabetes. Diabetes 60, 1474–1477 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Moon, H.-S. et al. Efficacy of metreleptin in obese patients with type 2 diabetes: cellular and molecular pathways underlying leptin tolerance. Diabetes 60, 1647–1656 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hanai, K. et al. Central action of acidic fibroblast growth factor in feeding regulation. Am. J. Physiol. 256, R217–R223 (1989).

    CAS  PubMed  Google Scholar 

  114. Oomura, Y. et al. A new brain glucosensor and its physiological significance. Am. J. Clin. Nutr. 55, 278S–282S (1992).

    Article  CAS  PubMed  Google Scholar 

  115. Sasaki, K. et al. Effects of fibroblast growth factors and related peptides on food intake by rats. Physiol. Behav. 56, 211–218 (1994).

    Article  CAS  PubMed  Google Scholar 

  116. Suh, J. M. et al. Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature 513, 436–439 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tennant, K. G., Lindsley, S. R., Kirigiti, M. A., True, C. & Kievit, P. Central and peripheral administration of fibroblast growth factor 1 improves pancreatic islet insulin secretion in diabetic mouse models. Diabetes 68, 1462–1472 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Scarlett, J. M. et al. Central injection of fibroblast growth factor 1 induces sustained remission of diabetic hyperglycemia in rodents. Nat. Med. 22, 800–806 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Brown, J. M. et al. The hypothalamic arcuate nucleus–median eminence is a target for sustained diabetes remission induced by fibroblast growth factor 1. Diabetes 68, 1054–1061 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Scarlett, J. M. et al. Peripheral mechanisms mediating the sustained antidiabetic action of FGF1 in the brain. Diabetes 68, 654–664 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Coppari, R. et al. The hypothalamic arcuate nucleus: a key site for mediating leptin’s effects on glucose homeostasis and locomotor activity. Cell Metab. 1, 63–72 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Berglund, E. D. et al. Direct leptin action on POMC neurons regulates glucose homeostasis and hepatic insulin sensitivity in mice. J. Clin. Invest. 122, 1000–1009 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gonçalves, G. H. M., Li, W., Garcia, A. V. C. -G., Figueiredo, M. S. & Bjørbæk, C. Hypothalamic agouti-related peptide neurons and the central melanocortin system are crucial mediators of leptin’s antidiabetic actions. Cell Rep. 7, 1093–1103 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Huo, L. et al. Leptin-dependent control of glucose balance and locomotor activity by POMC neurons. Cell Metab. 9, 537–547 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bentsen, M. A. et al. Transcriptomic analysis links diverse hypothalamic cell types to fibroblast growth factor 1-induced sustained diabetes remission. Nat. Commun. 11, 4458 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Alonge, K. M. et al. Hypothalamic perineuronal net assembly is required for sustained diabetes remission induced by fibroblast growth factor 1 in rats. Nat. Metab. 2, 1025–1033 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Claret, M. et al. Deletion of Lkb1 in pro-opiomelanocortin neurons impairs peripheral glucose homeostasis in mice. Diabetes 60, 735–745 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Smith, M. A. et al. Ribosomal S6K1 in POMC and AgRP neurons regulates glucose homeostasis but not feeding behavior in mice. Cell Rep. 11, 335–343 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chhabra, K. H. et al. Hypothalamic POMC deficiency improves glucose tolerance despite insulin resistance by increasing glycosuria. Diabetes 65, 660–672 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Chhabra, K. H. et al. Reduced renal sympathetic nerve activity contributes to elevated glycosuria and improved glucose tolerance in hypothalamus-specific Pomc knockout mice. Mol. Metab. 6, 1274–1285 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Shin, A. C. et al. Insulin receptor signaling in POMC, but Not AgRP, neurons controls adipose tissue insulin action. Diabetes 66, 1560–1571 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ren, H. et al. FoxO1 target Gpr17 activates AgRP neurons to regulate food intake. Cell 149, 1314–1326 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Xu, A. W. et al. PI3K integrates the action of insulin and leptin on hypothalamic neurons. J. Clin. Invest. 115, 951–958 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Könner, A. C. et al. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 5, 438–449 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Aponte, Y., Atasoy, D. & Sternson, S. M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci. 14, 351–355 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Krashes, M. J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424–1428 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Engström Ruud, L., Pereira, M. M. A., de Solis, A. J., Fenselau, H. & Brüning, J. C. NPY mediates the rapid feeding and glucose metabolism regulatory functions of AgRP neurons. Nat. Commun. 11, 442 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. van de Wall, E. et al. Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology 149, 1773–1785 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Deem, J. D. et al. Cold-induced hyperphagia requires AgRP neuron activation in mice. eLife 9, e58764 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Liu, T. et al. Fasting activation of AgRP neurons requires NMDA receptors and involves spinogenesis and increased excitatory tone. Neuron 73, 511–522 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Mizuno, T. M. et al. Hypothalamic pro-opiomelanocortin mRNA is reduced by fasting in ob/ob and db/db mice, but is stimulated by leptin. Diabetes 47, 294–297 (1998).

    Article  CAS  PubMed  Google Scholar 

  142. Takahashi, K. A. & Cone, R. D. Fasting induces a large, leptin-dependent increase in the intrinsic action potential frequency of orexigenic arcuate nucleus neuropeptide Y/agouti-related protein neurons. Endocrinology 146, 1043–1047 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Kolaczynski, J. W., Ohannesian, J. P., Considine, R. V., Marco, C. C. & Caro, J. F. Response of leptin to short-term and prolonged overfeeding in humans. J. Clin. Endocrinol. Metab. 81, 4162–4165 (1996).

    CAS  PubMed  Google Scholar 

  144. Colao, A. et al. Managing hyperglycemia in patients with Cushing’s disease treated with pasireotide: medical expert recommendations. Pituitary 17, 180–186 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Hsia, D. S., Grove, O. & Cefalu, W. T. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Curr. Opin. Endocrinol. Diabetes Obes. 24, 73–79 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Scaroni, C., Zilio, M., Foti, M. & Boscaro, M. Glucose metabolism abnormalities in Cushing syndrome: from molecular basis to clinical management. Endocr. Rev. 38, 189–219 (2017).

    Article  PubMed  Google Scholar 

  147. Shi, J. et al. Review: traumatic brain injury and hyperglycemia, a potentially modifiable risk factor. Oncotarget 7, 71052–71061 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Farooqi, I. S. et al. Partial leptin deficiency and human adiposity. Nature 414, 34–35 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Flak, J. N. & Myers, M. G. Minireview: CNS mechanisms of leptin action. Mol. Endocrinol. 30, 3–12 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. Bal, N. C. et al. Both brown adipose tissue and skeletal muscle thermogenesis processes are activated during mild to severe cold adaptation in mice. J. Biol. Chem. 292, 16616–16625 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Morrison, S. F., Madden, C. J. & Tupone, D. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab. 19, 741–756 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Carey, M. et al. Central K ATP channels modulate glucose effectiveness in humans and rodents. Diabetes 69, 1140–1148 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Timper, K. & Brüning, J. C. Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis. Model. Mech. 10, 679–689 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Barrett, P., Mercer, J. G. & Morgan, P. J. Preclinical models for obesity research. Dis. Model. Mech. 9, 1245–1255 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Deem, J. D., Muta, K., Scarlett, J. M., Morton, G. J. & Schwartz, M. W. How should we think about the role of the brain in glucose homeostasis and diabetes? Diabetes 66, 1758–1765 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Xu, J. et al. Genetic identification of leptin neural circuits in energy and glucose homeostases. Nature 556, 505–509 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Halban, P. A. et al. β-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. Diabetes Care 37, 1751–1758 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Hermann, G. M. et al. Neonatal catch-up growth increases diabetes susceptibility but improves behavioral and cardiovascular outcomes of low birth weight male mice. Pediatr. Res 66, 53–58 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Perng, W., Oken, E. & Dabelea, D. Developmental overnutrition and obesity and type 2 diabetes in offspring. Diabetologia 62, 1779–1788 (2019).

    Article  PubMed  Google Scholar 

  160. Schellong, K. et al. Sex-specific epigenetic alterations of the hypothalamic Agrp–Pomc system do not explain ‘diabesity’ in the offspring of high-fat diet (HFD) overfed maternal rats. J. Nutr. Biochem. 75, 108257 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. de Kloet, A. D. & Herman, J. P. Fat–brain connections: adipocyte glucocorticoid control of stress and metabolism. Front. Neuroendocrinol. 48, 50–57 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Magomedova, L. & Cummins, C. L. Glucocorticoids and metabolic control. Handb. Exp. Pharmacol. 233, 73–93 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Warner, A. & Mittag, J. Thyroid hormone and the central control of homeostasis. J. Mol. Endocrinol. 49, R29–R35 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Carrageta, D. F., Oliveira, P. F., Alves, M. G. & Monteiro, M. P. Obesity and male hypogonadism: tales of a vicious cycle. Obes. Rev. 20, 1148–1158 (2019).

    PubMed  Google Scholar 

  165. López, M. & Tena-Sempere, M. Estradiol effects on hypothalamic AMPK and BAT thermogenesis: a gateway for obesity treatment? Pharmacol. Ther. 178, 109–122 (2017).

    Article  CAS  PubMed  Google Scholar 

  166. Mauvais-Jarvis, F., Clegg, D. J. & Hevener, A. L. The role of estrogens in control of energy balance and glucose homeostasis. Endocr. Rev. 34, 309–338 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kooijman, S., van den Heuvel, J. K. & Rensen, P. C. N. Neuronal control of brown fat activity. Trends Endocrinol. Metab. 26, 657–668 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Bartness, T. J., Vaughan, C. H. & Song, C. K. Sympathetic and sensory innervation of brown adipose tissue. Int. J. Obes. 34, S36–S42 (2010).

    Article  Google Scholar 

  169. McNeill, B. T., Morton, N. M. & Stimson, R. H. Substrate utilization by brown adipose tissue: what’s hot and what’s not? Front. Endocrinol. 11, 571659 (2020).

    Article  Google Scholar 

  170. Morrison, S. F. & Nakamura, K. Central mechanisms for thermoregulation. Annu. Rev. Physiol. 81, 285–308 (2019).

    Article  CAS  PubMed  Google Scholar 

  171. Rossi, M. A. & Stuber, G. D. Overlapping brain circuits for homeostatic and hedonic feeding. Cell Metab. 27, 42–56 (2018).

    Article  CAS  PubMed  Google Scholar 

  172. Cone, R. D. Anatomy and regulation of the central melanocortin system. Nat. Neurosci. 8, 571–578 (2005).

    Article  CAS  PubMed  Google Scholar 

  173. Sutton, A. K., Myers, M. G. & Olson, D. P. The role of PVH circuits in leptin action and energy balance. Annu Rev. Physiol. 78, 207–221 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Fry, M. & Ferguson, A. V. The sensory circumventricular organs: brain targets for circulating signals controlling ingestive behavior. Physiol. Behav. 91, 413–423 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Ollmann, M. M. et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278, 135–138 (1997).

    Article  CAS  PubMed  Google Scholar 

  176. Schwartz, M. W. et al. Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes 46, 2119–2123 (1997).

    Article  CAS  PubMed  Google Scholar 

  177. Zhan, C. et al. Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J. Neurosci. 33, 3624–3632 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Baskin, D. G., Breininger, J. F. & Schwartz, M. W. Leptin receptor mRNA identifies a subpopulation of neuropeptide Y neurons activated by fasting in rat hypothalamus. Diabetes 48, 828–833 (1999).

    Article  CAS  PubMed  Google Scholar 

  179. Erickson, J. C., Hollopeter, G. & Palmiter, R. D. Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science 274, 1704–1707 (1996).

    Article  CAS  PubMed  Google Scholar 

  180. Winkler, Z. et al. Hypoglycemia-activated hypothalamic microglia impairs glucose counterregulatory responses. Sci. Rep. 9, 6224 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Luquet, S. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310, 683–685 (2005).

    Article  CAS  PubMed  Google Scholar 

  182. Gropp, E. et al. Agouti-related peptide-expressing neurons are mandatory for feeding. Nat. Neurosci. 8, 1289–1291 (2005).

    Article  CAS  PubMed  Google Scholar 

  183. Zhang, X. & van den Pol, A. N. Dopamine/tyrosine hydroxylase neurons of the hypothalamic arcuate nucleus release GABA, communicate with dopaminergic and other arcuate neurons, and respond to dynorphin, met-enkephalin, and oxytocin. J. Neurosci. 35, 14966–14982 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Zhang, X. & van den Pol, A. N. Hypothalamic arcuate nucleus tyrosine hydroxylase neurons play orexigenic role in energy homeostasis. Nat. Neurosci. 19, 1341–1347 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Atasoy, D., Betley, J. N., Su, H. H. & Sternson, S. M. Deconstruction of a neural circuit for hunger. Nature 488, 172–177 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Garfield, A. S. et al. A neural basis for melanocortin-4 receptor-regulated appetite. Nat. Neurosci. 18, 863–871 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Li, M. M. et al. The paraventricular hypothalamus regulates satiety and prevents obesity via two genetically distinct circuits. Neuron 102, 653–667 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Leinninger, G. M. et al. Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance. Cell Metab. 14, 313–323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hawke, Z. et al. PACAP neurons in the hypothalamic ventromedial nucleus are targets of central leptin signaling. J. Neurosci. 29, 14828–14835 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Patterson, C. M., Leshan, R. L., Jones, J. C. & Myers, M. G. Molecular mapping of mouse brain regions innervated by leptin receptor-expressing cells. Brain Res. 1378, 18–28 (2011).

    Article  CAS  PubMed  Google Scholar 

  191. Rezai-Zadeh, K. et al. Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake. Mol. Metab. 3, 681–693 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Chou, T. C. et al. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J. Neurosci. 23, 10691–10702 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Grill, H. J. & Hayes, M. R. Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metab. 16, 296–309 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Zhang, C. et al. Area postrema cell types that mediate nausea-associated behaviors. Neuron https://doi.org/10.1016/j.neuron.2020.11.010 (2020).

  195. Ludwig, M. Q. et al. A genetic map of the mouse dorsal vagal complex and its role in obesity. Nat. Metab. https://doi.org/10.1038/s42255-021-00363-1 (2021).

  196. Sabatini, P. V. et al. GFRAL-expressing neurons suppress food intake via aversive pathways. Proc. Natl Acad. Sci. USA 118, e2021357118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Bai, L. et al. Genetic identification of vagal sensory neurons that control feeding. Cell 179, 1129–1143 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Kaelberer, M. M., Rupprecht, L. E., Liu, W. W., Weng, P. & Bohórquez, D. V. Neuropod cells: the emerging biology of gut–brain sensory transduction. Annu Rev. Neurosci. 43, 337–353 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Huo, L., Maeng, L., Bjørbaek, C. & Grill, H. J. Leptin and the control of food intake: neurons in the nucleus of the solitary tract are activated by both gastric distension and leptin. Endocrinology 148, 2189–2197 (2007).

    Article  CAS  PubMed  Google Scholar 

  200. Huo, L., Gamber, K. M., Grill, H. J. & Bjørbaek, C. Divergent leptin signaling in proglucagon neurons of the nucleus of the solitary tract in mice and rats. Endocrinology 149, 492–497 (2008).

    Article  CAS  PubMed  Google Scholar 

  201. Tsai, V. W.-W. et al. GDF15 mediates adiposity resistance through actions on GFRAL neurons in the hindbrain AP/NTS. Int J. Obes. 43, 2370–2380 (2019).

    Article  CAS  Google Scholar 

  202. Alhadeff, A. L. et al. Endogenous glucagon-like peptide-1 receptor signaling in the nucleus tractus solitarius is required for food intake control. Neuropsychopharmacology 42, 1471–1479 (2017).

    Article  CAS  PubMed  Google Scholar 

  203. Hayes, M. R. et al. Endogenous leptin signaling in the caudal nucleus tractus solitarius and area postrema is required for energy balance regulation. Cell Metab. 23, 744 (2016).

    Article  CAS  PubMed  Google Scholar 

  204. Cheng, W. et al. Calcitonin receptor neurons in the mouse nucleus tractus solitarius control energy balance via the non-aversive suppression of feeding. Cell Metab. 31, 301–312 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Cheng, W. et al. Leptin receptor–expressing nucleus tractus solitarius neurons suppress food intake independently of GLP1 in mice. JCI Insight 5, e134359 (2020).

    Article  PubMed Central  Google Scholar 

  206. Wadden, T. A. et al. Effect of subcutaneous semaglutide vs placebo as an adjunct to intensive behavioral therapy on body weight in adults with overweight or obesity: the STEP 3 randomized clinical trial. JAMA https://doi.org/10.1001/jama.2021.1831 (2021).

  207. Palmiter, R. D. The parabrachial nucleus: CGRP neurons function as a general alarm. Trends Neurosci. 41, 280–293 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Chen, J. Y., Campos, C. A., Jarvie, B. C. & Palmiter, R. D. Parabrachial CGRP neurons establish and sustain aversive taste memories. Neuron 100, 891–899 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Campos, C. A., Bowen, A. J., Schwartz, M. W. & Palmiter, R. D. Parabrachial CGRP neurons control meal termination. Cell Metab. 23, 811–820 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. D’Agostino, G. et al. Appetite controlled by a cholecystokinin nucleus of the solitary tract to hypothalamus neurocircuit. eLife 5, e12225 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Wu, Q., Boyle, M. P. & Palmiter, R. D. Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation. Cell 137, 1225–1234 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Shah, B. P. et al. MC4R-expressing glutamatergic neurons in the paraventricular hypothalamus regulate feeding and are synaptically connected to the parabrachial nucleus. Proc. Natl Acad. Sci. USA 111, 13193–13198 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Li, A.-J., Wang, Q. & Ritter, S. Selective pharmacogenetic activation of catecholamine subgroups in the ventrolateral medulla elicits key glucoregulatory responses. Endocrinology 159, 341–355 (2018).

    Article  CAS  PubMed  Google Scholar 

  214. Hudson, B. & Ritter, S. Hindbrain catecholamine neurons mediate consummatory responses to glucoprivation. Physiol. Behav. 82, 241–250 (2004).

    Article  CAS  PubMed  Google Scholar 

  215. Cryer, P. E. Glucose counterregulation: prevention and correction of hypoglycemia in humans. Am. J. Physiol. 264, E149–E155 (1993).

    CAS  PubMed  Google Scholar 

  216. Li, A.-J., Wang, Q., Elsarelli, M. M., Brown, R. L. & Ritter, S. Hindbrain catecholamine neurons activate orexin neurons during systemic glucoprivation in male rats. Endocrinology 156, 2807–2820 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Aklan, I. et al. NTS catecholamine neurons mediate hypoglycemic hunger via medial hypothalamic feeding pathways. Cell Metab. 31, 313–326 (2020).

    Article  CAS  PubMed  Google Scholar 

  218. Hensch, T. K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888 (2005).

    Article  CAS  PubMed  Google Scholar 

  219. Bouret, S. G. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304, 108–110 (2004).

    Article  CAS  PubMed  Google Scholar 

  220. Kamitakahara, A., Bouyer, K., Wang, C.-H. & Simerly, R. A critical period for the trophic actions of leptin on AgRP neurons in the arcuate nucleus of the hypothalamus. J. Comp. Neurol. 526, 133–145 (2018).

    Article  CAS  PubMed  Google Scholar 

  221. Bouret, S. G., Draper, S. J. & Simerly, R. B. Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J. Neurosci. 24, 2797–2805 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Rupp, A. C. et al. Specific subpopulations of hypothalamic leptin receptor-expressing neurons mediate the effects of early developmental leptin receptor deletion on energy balance. Mol. Metab. 14, 130–138 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Ahima, R. S., Prabakaran, D. & Flier, J. S. Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function. J. Clin. Invest. 101, 1020–1027 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Biddinger, J. E., Lazarenko, R. M., Scott, M. M. & Simerly, R. Leptin suppresses development of GLP-1 inputs to the paraventricular nucleus of the hypothalamus. eLife 9, e59857 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Rinaman, L. Postnatal development of catecholamine inputs to the paraventricular nucleus of the hypothalamus in rats. J. Comp. Neurol. 438, 411–422 (2001).

    Article  CAS  PubMed  Google Scholar 

  226. Mirzadeh, Z. et al. Perineuronal net formation during the critical period for neuronal maturation in the hypothalamic arcuate nucleus. Nat. Metab. 1, 212–221 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Carulli, D. et al. Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain 133, 2331–2347 (2010).

    Article  PubMed  Google Scholar 

  228. Pizzorusso, T. Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298, 1248–1251 (2002).

    Article  CAS  PubMed  Google Scholar 

  229. Gogolla, N., Caroni, P., Luthi, A. & Herry, C. Perineuronal nets protect fear memories from erasure. Science 325, 1258–1261 (2009).

    Article  CAS  PubMed  Google Scholar 

  230. Tamashiro, K. L. K., Terrillion, C. E., Hyun, J., Koenig, J. I. & Moran, T. H. Prenatal stress or high-fat diet increases susceptibility to diet-induced obesity in rat offspring. Diabetes 58, 1116–1125 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Glavas, M. M. et al. Early overnutrition results in early-onset arcuate leptin resistance and increased sensitivity to high-fat diet. Endocrinology 151, 1598–1610 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.G.M. is supported by grants from the National Institutes of Health (NIH) National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK; DK056731, DK104999 and DK020572) and the Marilyn H. Vincent Foundation. A.H.A. is supported by NIH NIDDK (F32 DK122660). N.R. is supported by the NIDDK-funded University of Washington Diabetes, Obesity and Metabolism Fellowship Training Grant (T32 DK007247). M.W.S. is supported by NIDDK grants DK083042 and DK089056.

Author information

Authors and Affiliations

Authors

Contributions

M.G.M. and M.W.S. wrote the initial draft of the manuscript. All authors contributed to the writing of the manuscript, drafting of figures and editing of the manuscript and figures.

Corresponding author

Correspondence to Michael W. Schwartz.

Ethics declarations

Competing interests

M.G.M. receives research funding from AstraZeneca, Novo Nordisk and Ionis, and consults for LG Chem. M.W.S. receives research funding from Novo Nordisk. The authors declare no other competing interests.

Additional information

Peer review information Nature Metabolism thanks Young-Hwan Jo, Miguel López and Giles Yeo for their contribution to the peer review of this work. Primary Handling Editor: Christoph Schmitt.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myers, M.G., Affinati, A.H., Richardson, N. et al. Central nervous system regulation of organismal energy and glucose homeostasis. Nat Metab 3, 737–750 (2021). https://doi.org/10.1038/s42255-021-00408-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-021-00408-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing