Skip to main content
Log in

Microwave-Assisted Plasma Catalytic Conversion of Tar to Hydrocarbon Products

Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Rapid conversion of tar from the Nizhnekamsk Oil Refinery in the plasma catalytic mode stimulated by microwave radiation (MWR, 2.45 ± 0.05 GHz) was studied. A quartz reactor arranged in the installation waveguide was charged with tar mixed with 15 wt % catalytic system characterized by high dielectric loss. Microwave radiation gives rise to breakdown effects on the surface of the catalytic system, followed by the plasma generation. In the plasma catalytic mode at optimum temperature of the reaction zone, 650–700°С, the tar undergoes rapid degradation with the formation of gaseous (9.3 wt %) and liquid (75.7 wt %) products and of a carbon residue containing the catalytic system (15 wt %). The maximal tar conversion is 85% upon 20-min irradiation. Analysis by gas chromatography–mass spectrometry and IR spectroscopy shows that the tar conversion products consist mainly of alkanes, alkenes, alkynes, and alkyl-substituted aromatic hydrocarbons. The solid iron-containing residue separated from the tar hydrogenation products exhibits increased ability to absorb MWR and can be used repeatedly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bagdasarov, L.M., Populyarnaya neftepererabotka (Popular Oil Refining), Moscow: Platforma, 2017.

  2. Kapustin, V., Chernysheva, E., and Timin, E., Oil Gas J. Russ., 2018, no. 8, pp. 80–87.

    Google Scholar 

  3. Prajapati, R., Kohli, K., and Maity, S.K., Fuel, 2020, article 119686. https://doi.org/10.1016/j.fuel.2020.119686

  4. Tsodikov, M.V., Perederii, M.A., Karaseva, M.S., Gurko, A.A., Zhevago, N.K., Maksimov, Yu.V., Suzdalev, I.P., and Marin, V.P., Naukoemk. Tekhnol., 2007, vol. 8, no. 4, pp. 58–67.

    Google Scholar 

  5. Tsodikov, M.V., Perederii, M.A., Karaseva, M.S., Maksimov, Yu.V., Suzdalev, I.P., Gurko, A.A., and Zhevago, N.K., Ross. Nanotekhnol., 2006, vol. 1, nos. 1–2, pp. 153–161.

    Google Scholar 

  6. Tsodikov, M.V., Perederii, M.A., Chistyakov, A.V., Konstantinov, G.I., Kadiev, K.M., and Khadzhiev, S.N., Solid Fuel Chem., 2012, vol. 46, no. 2, pp. 121–127. https://doi.org/10.3103/S0361521912020115

    Article  CAS  Google Scholar 

  7. Bilecka, I. and Niederberger, M., Nanoscale, 2010, vol. 2, no. 8, pp. 1358–1374. https://doi.org/10.1039/B9NR00377K

    Article  CAS  PubMed  Google Scholar 

  8. Durka, T., Van Gerven, T., and Stankiewicz, A., Chem. Eng. Technol.: Ind. Chem.–Plant Equip.–Process Eng.– Biotechnol., 2009, vol. 32, no. 9, pp. 1301–1312. https://doi.org/10.1002/ceat.200900207

    Article  CAS  Google Scholar 

  9. Tsodikov, M.V., Perederii, M.A., Bukhtenko, O.V., Zhdanova, T.N., Chistyakov, A.V., Bykov, V.I., Martynov, B.I., Zalepugin, D.Yu., and Marin, V.P., Patent RU 2428630, Jan. 10, 2011.

  10. Tsodikov, M.V., Khadzhiev, S.N., Perederii, M.A., Kadiev, Kh.M., Chistyakov, A.V., Martynov, B.I., Konstantinov, G.I., and Marin, V.P., Patent RU 2462500, Sept. 27, 2012.

  11. Tsodikov, M.V., Ellert, O.G., Nikolaev, S.A., Arapova, O.V., Bukhtenko, O.V., Maksimov, Yu.V., Kirdyankin, D.I., and Vasil’kov, A.Yu., J. Nanoparticle Res., 2018, vol. 20, no. 3, pp. 1–15. https://doi.org/10.1007/s11051-018-4185-7

    Article  CAS  Google Scholar 

  12. Zharova, P., Arapova, O.V., Konstantinov, G.I., Chistyakov, A.V., and Tsodikov, M.V., J. Chem., 2019, vol. 2019. https://doi.org/10.1155/2019/6480354

  13. Strohm, J.J., Linehan, J.C., Roberts, B.Q., Mcmakin, D.L., Sheen, D.M., Griffin, J.W., and Franz, J.A., Patent RU 2636151, 2017.

  14. Wu, Z., Zhao, X., Zhang, J., Li, X., Zhang, Y., and Wang, F., Bioresource Technol., 2019, vol. 278, pp. 187–194. https://doi.org/10.1016/j.biortech.2019.01.082

    Article  CAS  Google Scholar 

  15. Wang, W., Ma, Z., Zhao, X., Liu, S., Cai, L., Shi, S.Q., and Ni, Y., ACS Sustain. Chem. Eng., 2020, vol. 8, no. 43, pp. 16086–16090. https://doi.org/10.1021/acssuschemeng.0c04658

    Article  CAS  Google Scholar 

  16. Tsodikov, M.V., Ellert, O.G., Nikolaev, S.A., Arapova, O.V., Konstantinov, G.I., Bukhtenko, O.V., and Vasil’kov, A.Y., Chem. Eng. J., 2017, vol. 309, pp. 628–637. https://doi.org/10.1016/j.cej.2016.10.031

    Article  CAS  Google Scholar 

  17. Arapova, O.V., Ellert, O.G., Borisov, R.S., Chistyakov, A.V., Vasil’kov, A.Y., Tsodikov, M.V., and Gekhman, A.E., Petrol. Chem., 2019, vol. 59, no. 1, pp. 111–119. https://doi.org/10.1134/S0965544119010055

    Article  CAS  Google Scholar 

  18. Perederii, M.A., Noskova, Yu.A., Karaseva, N.S., and Konovalov, P.N., Solid Fuel Chem., 2009, vol. 43, no. 6, pp. 362–373.

    Article  Google Scholar 

  19. Tsodikov, M.V., Chistyakov, A.V., Kurdyumov, S.S., Konstantinov, G.I., Perederii, M.A., Khadzhiev, S.N., and Kadiev, Kh.M., Patent RU 2535211, 2014, Byull. Izobret, 2014, no. 34.

  20. Tsodikov, M.V., Konstantinov, G.I., Chistyakov, A.V., Arapova, O.V., and Perederii, M.A., Chem. Eng. J., 2016, vol. 292, pp. 315–320. https://doi.org/10.1016/j.cej.2016.02.028

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Representative of LECO Corporation in Russia and CIS countries for the opportunity to use a Pegasus BT 4D time-of-flight gas chromatograph–mass spectrometer with two-dimensional gas chromatography. The study was performed using the equipment of the Center for Shared Use at the Russian University of Peoples’ Friendship and Center for Shared Use Analytical Center for Problems of Deep Oil Refining and Petroleum Chemistry at the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Funding

The study was financially supported by the Russian Science Foundation (project no. 21-13-00457). The mass-spectrometric analysis of the transformation products was supported by the Russian Science Foundation (project no. 18-73-10138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Tsodikov.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Neftekhimiya, 2021, Vol. 61, No. 4, pp. 473–482 https://doi.org/10.31857/S0028242121040031.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsodikov, M.V., Chistyakov, A.V., Konstantinov, G.I. et al. Microwave-Assisted Plasma Catalytic Conversion of Tar to Hydrocarbon Products. Pet. Chem. 61, 721–728 (2021). https://doi.org/10.1134/S0965544121070070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121070070

Keywords:

Navigation