Skip to main content
Log in

Effects of Support on the Formation and Activity of Gold Catalysts for Ethanol Conversion to Butanol

Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Using a combination of physicochemical methods, such as TEM, SEM, EDS, XPS, NH3–TPD, and N2 adsorption, the study investigates the structure of a number of supports (Al2O3, SiO2, TiO2, ZrO2, and C) and of Au/support catalyst samples (Au = 0.5%). The concentration of highly active 2–4 nm gold particles in Au catalysts is influenced by the support’s texture; this concentration increases in the following order: Au/TiO2 < Au/ZrO2 < Au/C < Au/SiO2 << Au/Al2O3. The acidity of Au catalysts is influenced by the support’s nature; this acidity decreases in the following order: Al2O3 > TiO2 > ZrO2 > SiO2 >> Au/C. At 275°C, a carbon support is inactive in ethanol conversion to butanol. In the presence of oxide supports, the target reaction occurs at a relatively low rate by a bimolecular condensation mechanism. Over Au/Al2O3, Au/SiO2, Au/TiO2, or Au/ZrO2, the reaction occurs more rapidly by an aldol condensation mechanism. At an ethanol conversion of 14–18%, the butanol selectivity increases in the following order: Au/C(0) << Au/SiO2 (0.4%) < Au/ZrO2 (1.5%) < Au/TiO2 (2%) << Au/Al2O3 (78%). The high efficiency of Au/Al2O3 stems from the high density of the Aln+–O2– sites located on the support’s surface, and of the coordination-unsaturated Au0(KH) atoms located on the surface of 2–4 nm gold particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Abdulrazzaq, H.T. and Schwartz, T.J., Ethanol, Sci. Eng., 2019, pp. 3–24. https://doi.org/10.1016/B978-0-12-811458-2.00001-8

  2. Wu, X., Fang, G., Tong, Y., Jiang, D., Liang, Z., Leng, W., Liu, L., Tu, P., Wang, H., Ni, J., and Liet, X., ChemSusChem., 2018, vol. 11, pp. 71–85. https://doi.org/10.1002/cssc.201701590

    Article  CAS  PubMed  Google Scholar 

  3. Gabriëls, D., Hernández, W.Y., Sels, B., Voort, P.V.D., and Verberckmoes, A., Catal. Sci. Technol., 2015, vol. 5, pp. 3876–3902. https://doi.org/10.1039/C5CY00359H

    Article  CAS  Google Scholar 

  4. Kozlowski, J.T. and Davis, R.J., ACS Catal., 2013, vol. 3, no. 7, pp. 1588–1600. https://doi.org/10.1021/cs400292f

    Article  CAS  Google Scholar 

  5. Dai, J. and Zhang, H., Sci. China Mater., 2019, vol. 62, pp. 1642–1654. https://doi.org/10.1007/s40843-019-9454-x

    Article  CAS  Google Scholar 

  6. Yang, C. and Meng, Z.Y., J. Catal., 1993, vol. 142, pp. 37–44. https://doi.org/10.1006/jcat.1993.1187

    Article  CAS  Google Scholar 

  7. Ndou, A.S., Plint, N., and Coville, N.J., Appl. Catal. A: General, 2003, vol. 251, no. 2, pp. 337–345. https://doi.org/10.1016/S0926-860X(03)00363-6

    Article  CAS  Google Scholar 

  8. Carvalho, D.L., de Avillez, R.R., Rodrigues, M.T., Borges, L.E.P., and Appel, L.G., Appl. Catal. A: General., 2012, vol. 415–416, pp. 96–100. https://doi.org/10.1016/j.apcata.2011.12.009

    Article  CAS  Google Scholar 

  9. Cosimo, J.I. Di, Dı́ez, V.K., Xu, M., Iglesia, E., and Apesteguı́a, C.R., J. Catal., 1998, vol. 178, no. 2, pp. 499–510. https://doi.org/10.1006/jcat.1998.2161

    Article  Google Scholar 

  10. Sun, Z., Vasconcelos, A.C., Bottari, G., Stuart, M.C.A., Bonura, G., Cannilla, C., Frusteri, F., and Barta, K., ACS Sustainab. Chem. Eng., 2017, vol. 5, no. 2, pp. 1738–1746. https://doi.org/10.1021/acssuschemeng.6b02494

    Article  CAS  Google Scholar 

  11. Riittonen, T., Toukoniitty, E., Madnani, D.K., Leino, A.-R., Kordas, K., Szabo, M., Sapi, A., Arve, K., Wärnå, J., and Mikkola, J.-P., Catalysts, 2012, vol. 2, pp. 68–84. https://doi.org/10.3390/catal2010068

    Article  CAS  Google Scholar 

  12. Marcu, I.-C., Tanchoux, N., Fajula, F., and Tichit, D., Catal. Lett., 2013, vol. 143, pp. 23–30. https://doi.org/10.1007/s10562-012-0935-9

    Article  CAS  Google Scholar 

  13. Nikolaev, S.A., Tsodikov, M.V., Chistyakov, A.V., Chistyakova, P.A., Ezzhelenko, D.I., and Shilina, M.I., Catal. Today, 2020. https://doi.org/10.1016/j.cattod.2020.06.061

  14. Takei, T., Akita, T., Nakamura, I., Fujitani, T., Okumura, M., Okazaki, K., Huang, J., Ishida, T., and Haruta, M., Adv. Catal., 2012, vol. 55, pp. 1–126. https://doi.org/10.1016/B978-0-12-385516-9.00001-6

    Article  CAS  Google Scholar 

  15. McEwan L, Julius M, Roberts S, and Fletcher, J.C.Q., Gold Bull., 2010, vol. 43, pp. 298–306. https://doi.org/10.1007/BF03214999

    Article  Google Scholar 

  16. Fang, W., Chen, J., Zhang, Q., Deng, W., and Wang, Y., Chem. Eur. J., 2011, vol. 17, pp. 1247–1256. https://doi.org/10.1002/chem.201002469

    Article  CAS  PubMed  Google Scholar 

  17. Morales, M.V., Asedegbega-Nieto, E., Castillejos-López, E., Bachiller-Baezab, B., and Guerrero-Ruiz, A., RSC Adv., 2018, vol. 8, pp. 7473–7485. https://doi.org/10.1039/C8RA00314A

    Article  CAS  Google Scholar 

  18. Quesada, J., Arreola-Sánchez, R., Faba, L., Díaz, E., Rentería-Tapia, V.M., and Ordóñez, S., Appl. Catal. B: Environmental, 2018, vol. 551, pp. 23–33. https://doi.org/10.1016/j.apcata.2017.12.004

    Article  CAS  Google Scholar 

  19. Chistyakov, A.V., Zharova, P.A., Nikolaev, S.A., and Tsodikov, M.V., Catal. Today, 2017, vol. 279, pp. 124–132. https://doi.org/10.1016/j.cattod.2016.06.016

    Article  CAS  Google Scholar 

  20. Nikolaev, S.A., Tsodikov, M.V., Chistyakov, A.V., Zharova, P.A., and Ezzgelenko, D.I., J. Catal., 2019, vol. 369, pp. 501–517. https://doi.org/10.1016/j.jcat.2018.11.017

    Article  CAS  Google Scholar 

  21. Chistyakov, A.V., Nikolaev, S.A., Zharova, P.A., Tsodikov, M.V., and Manenti, F., Energy, 2019, vol. 166, pp. 569–576. https://doi.org/10.1016/j.energy.2018.10.071

    Article  CAS  Google Scholar 

  22. Taran, O.P., Descorme, C., Polyanskaya, E.M., Ayusheev, A.B., Besson, M., Parmon, V.N., Catal. Industr., 2013, vol. 5, pp. 164–174. https://doi.org/10.1134/S2070050413020104

    Article  Google Scholar 

  23. Nikolaev, S.A., Golubina, E.V., Krotova, I.N., Shilina, M.I., Chistyakov, A.V., and Kriventsov, V.V., Appl. Catal. B: Environmental., 2015, vols. 168–169, pp. 303–312. https://doi.org/10.1016/j.apcatb.2014.12.030

    Article  CAS  Google Scholar 

  24. Naumkin, A.V., Vasil’kov, A.Yu., Volkov, I.O., Smirnov, V.V., and Nikolaev, S.A., Pure Appl. Chem., 2007, vol. 43, no. 4, pp. 381–385. https://doi.org/10.1134/S0020168507040103

    Article  CAS  Google Scholar 

  25. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscow, L., Pierotti, R.A., Rouquérol, J., and Siemieniewska, T., Pure Appl. Chem., 1985, vol. 57, no. 4, pp. 603–619. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  26. De Boer, J.H., The Structure and Properties of Porous Materials, Everett, D.H. and Stone, F.S., Eds., London: Butterworths, 1958.

  27. Kanda, Y., Nakata, K., Temma, C., Sugioka, M., and Uemichi, Y., J. Japan Petrol. Inst., 2012, vol. 55, pp. 108–119. https://doi.org/10.1627/jpi.55.108

    Article  CAS  Google Scholar 

  28. Liu, D., Zhu H. Zhao, J., Pan, L., Dai, P., Gu, X., Li, L., Liu, Y., and Zhao, X., Materials, 2018, vol. 11, article 1067. https://doi.org/10.3390/ma11071067

  29. Hu, Z., Li, W.-Z., Sun, K.-Q., and Xu, B.-Q., Catal. Sci. Technol., 2013, vol. 3, pp. 2062–2071. https://doi.org/10.1039/C3CY00228D

    Article  CAS  Google Scholar 

  30. Shamanaev, I.V., Deliy, I.V., Gerasimov, E.Yu., Pakharukova, V.P., Kodenev, E.G., Aleksandrov, P.V., and Bukhtiyarova, G.A., Catalysts, 2017, vol. 7, article 329. https://doi.org/10.3390/catal7110329

  31. Qin, B., Shen, Y., Xu, B., Zhu, S., Li, P., and Liu, Y., RSC Adv., 2018, vol. 8, pp. 7579–7587. https://doi.org/10.1039/C8RA00112J

    Article  CAS  Google Scholar 

  32. Slepterev, A.A., Iost, K.N., Temerev, V.L., Talzi, V.P., Leont’eva, N.N., and Tsyrul’nikov, P.G., Omsk. Nauch. Vestn., 2013, vol. 117, pp. 55–58.

    Google Scholar 

  33. Nikolaev, S.A. and Smirnov, V.V., Catal. Today, 2009, vol. 147S, pp. S336–S341. https://doi.org/10.1016/j.cattod.2009.07.032

  34. Lee, J., Szanyi, J., and Kwak, J.H., Mol. Catal., 2017, vol. 434, pp. 39–48. https://doi.org/10.1016/j.mcat.2016.12.013

    Article  CAS  Google Scholar 

  35. Fang, W., Zhang, Q., Chen, J., Deng, W., and Wang, Y., Chem. Commun., 2010, vol. 46, pp. 1547–1549. https://doi.org/10.1039/B923047E

    Article  CAS  Google Scholar 

  36. Wang, C., Garbarino, G., Allard, L.F., Wilson, F., and Busca, G., ACS Catal., 2016, vol. 6, pp. 210–218. https://doi.org/10.1021/acscatal.5b01593

    Article  CAS  Google Scholar 

  37. Bus, E., Prins, R., and van Bokhoven, J.A., Catal. Commun., 2007, vol. 8, pp. 1397–1402. https://doi.org/10.1016/j.catcom.2006.11.040

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the researchers of the “Nanochemistry and nanomaterials” Center for Collective Use in the Lomonosov Moscow State University (MSU), and in particular to K.I. Maslakov, S.V. Maksimov, and S.V. Dvoryak, for their kind cooperation in the examination of samples using equipment acquired under the MSU Development Program.

Funding

The study on development of a technology for ethanol conversion to butanol was carried out within the framework of the state assignment for the TIPS RAS, and partially with financial support from the Russian Foundation for Basic Research (grant no. 21-53-12006).

The structural properties and correlations between the structure and activity of the supported catalysts were examined with financial support from the Russian Foundation for Basic Research (research project no. 20-33-90011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nikolaev.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Neftekhimiya, 2021, Vol. 61, No. 4, pp. 504–519 https://doi.org/10.31857/S0028242121040067.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaev, S.A., Chistyakov, A.V., Chistyakova, P.A. et al. Effects of Support on the Formation and Activity of Gold Catalysts for Ethanol Conversion to Butanol. Pet. Chem. 61, 748–761 (2021). https://doi.org/10.1134/S0965544121050145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121050145

Keywords:

Navigation