Skip to main content
Log in

Phase equivalent Coulomb-like potential

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

An equivalent energy-dependent local potential corresponding to Coulomb plus Graz separable potential is constructed through simple rearrangement of the Schrödinger equation. It is conjectured that local Coulomb-like potential is equally applicable for the traditional phase function method. The merit of our constructed potential is thus judged by studying nucleon–nucleon and alpha–nucleon systems through the phase function method. Good agreement in phase shift values with standard data is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M Coz, L G Arnold and A D MacKellar, Ann. Phys. (NY) 59, 219 (1970)

    Article  ADS  Google Scholar 

  2. L G Arnold and A D MacKellar, Phys. Rev. C 3,1095 (1971)

    Article  ADS  Google Scholar 

  3. J P McTavish, J. Phys. G 8, 1037 (1982)

    Article  ADS  Google Scholar 

  4. B Talukdar, G C Sett and S R Bhattaru, J. Phys. G 11, 591 (1985)

    Article  ADS  Google Scholar 

  5. G C Sett, U Laha and B Talukdar, Pramana – J. Phys. 28, 325 (1987)

    Article  ADS  Google Scholar 

  6. U Laha, S K Das and J Bhoi, Turk. J. Phys. 41, 447 (2017)

    Article  Google Scholar 

  7. U Laha, J. Kor. Phys. Soc. 75, 935 (2019)

    Article  ADS  Google Scholar 

  8. A K Behera, U Laha and J Bhoi, Turk. J. Phys. 44, 229 (2020)

    Article  Google Scholar 

  9. B Talukdar, D K Ghosh and T Sasakawa, J. Math. Phys. 23, 1700 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  10. H van Haeringen and R van Wageningen, J. Math. Phys. 16, 1441 (1975)

    Article  ADS  Google Scholar 

  11. L Cripinsek, C B Lang, H Oberhummer, W Plessas and H F K Zingl, Acta Phys. Austriaca 42, 139 (1975)

    Google Scholar 

  12. W Schweiger, W Plessas, L P Kok and H van Haeringen, Phys. Rev. C 27, 515 (1983)

    Article  ADS  Google Scholar 

  13. J Haidenbauer and W Plessas, Phys. Rev. C 30, 1822 (1984)

    Article  ADS  Google Scholar 

  14. B Talukdar, U Laha and T Sasakawa, J. Math. Phys. 27, 2080 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  15. U Laha, B J Roy and B Talukdar, J. Phys. A 22, 3597 (1989)

    Article  ADS  Google Scholar 

  16. F Calogero, Variable phase approach to potential scattering (Academic, New York, 1967)

    MATH  Google Scholar 

  17. G C Sett, U Laha and B Talukdar, J. Phys. A 21, 3643 (1988)

    Article  ADS  Google Scholar 

  18. U Laha, N Haque, T Nandi and G C Sett, Z. Phys. A At. Nucl. 332, 305 (1989)

    Article  ADS  Google Scholar 

  19. U Laha, A K Jana and T Nandi, Pramana – J. Phys. 37, 387 (1991)

    Article  ADS  Google Scholar 

  20. U Laha and J Bhoi, J. Math. Phys. 54, 013514 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. U Laha and J Bhoi, Phys. Rev. C 88, 064001 (2013)

    Article  ADS  Google Scholar 

  22. R G Newton, Scattering theory of waves and particles (McGraw-Hill, New York, 1982)

    Book  MATH  Google Scholar 

  23. J R Taylor, Scattering theory: The quantum theory of non-relativistic collisions (John Wiley & Sons, Inc, New York, 1972)

    Google Scholar 

  24. L J Slater, Confluent hypergeometric functions (Cambridge University Press, New York, 1960)

    MATH  Google Scholar 

  25. H Buchholz, The confluent hypergeometric function (Springer, New York, 1969)

    Book  MATH  Google Scholar 

  26. A W Babister, Transcendental functions satisfying non-homogeneous linear differential equations (The MacMillan Company, New York, 1967)

    MATH  Google Scholar 

  27. A Erdeyli, Higher transcendental functions (McGraw-Hill, New York, 1953) Vol. 1

  28. W Magnus and F Oberhettinger, Formulas and theorems for the special functions of mathematical physics (Chelsea, New York, 1949)

    MATH  Google Scholar 

  29. L J Slater, Generalized hypergeometric functions (Cambridge University Press, Cambridge, 1966)

    MATH  Google Scholar 

  30. I S Gradshteyn and I M Ryzhik, Tables of integrals, series and products (Academic Press, London, 2000)

    MATH  Google Scholar 

  31. J Bhoi and U Laha, Pramana – J. Phys. 91: 77 (2018)

  32. R A Arndt, L D Roper, R A Bryan, R B Clark, B J Ver West and P Signell, Phys. Rev. D 28, 97 (1983)

    Article  ADS  Google Scholar 

  33. G R Satchler, L W Owen, A J Elwin, G L Morgan and R L Walter, Nucl. Phys. A 112, 1 (1968)

    Article  ADS  Google Scholar 

  34. P Swan, Proc. Roy. Soc. 228, 10 (1955)

    ADS  Google Scholar 

  35. E Van der Spuy, Nucl. Phys. 1, 381 (1956)

    Article  Google Scholar 

  36. J Gammel and R Thaler, Phys. Rev. 109, 2041 (1958)

    Article  ADS  Google Scholar 

  37. A M Mitra, V S Bhasin and B S Bhakar, Nucl. Phys. 38, 316 (1962)

    Article  Google Scholar 

  38. J Pigeon, J Barguil, C Fayard, G H Lamot and E El Baz, Nucl. Phys. A 145, 319 (1970)

    Article  ADS  Google Scholar 

  39. S Ali, M Rahaman and D Hussain, Phys. Rev. D 6, 1178 (1972)

    Article  ADS  Google Scholar 

  40. S Ali, M Rahaman and D Hussain, Phys. Rev. C 9, 1657 (1974)

    Article  ADS  Google Scholar 

  41. A A Z Ahmad, S Ali, N Ferdous and M Ahmed, Nuovo Cimento A 30, 385 (1975)

    Article  ADS  Google Scholar 

  42. G Cattapan, G Pisent and V Vanzani, Nucl. Phys. A 241, 204 (1975)

    Article  ADS  Google Scholar 

  43. A K Rafiquallah, S Hossain, N Chowdhury, A Begum and N Ferdous, Daccan Univ. Stud. B 23, 5 (1975)

    Google Scholar 

  44. C L Lee and D Robson, Nucl. Phys. A 379, 11 (1982)

    Article  ADS  Google Scholar 

  45. J Dohet-Eraly and D Baye, Phys. Rev. C 84, 014604 (2011)

    Article  ADS  Google Scholar 

  46. U Laha and J Bhoi, Phys. Rev. C 91, 034614 (2015)

    Article  ADS  Google Scholar 

  47. A K Behera, U Laha, M Majumder and J Bhoi, J. Kor. Phys. Soc. 74, 428 (2019)

    Article  ADS  Google Scholar 

  48. A K Behera, B Khirali, U Laha and J Bhoi, Theor. Math. Phys. 205, 1353 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U Laha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, A.K., Laha, U. Phase equivalent Coulomb-like potential. Pramana - J Phys 95, 103 (2021). https://doi.org/10.1007/s12043-021-02141-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02141-w

Keywords

PACS Nos

Navigation