Skip to main content
Log in

Model detection and variable selection for mode varying coefficient model

  • Original Paper
  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

Varying coefficient model is often used in statistical modeling since it is more flexible than the parametric model. However, model detection and variable selection of varying coefficient model are poorly understood in mode regression. Existing methods in the literature for these problems are often based on mean regression and quantile regression. In this paper, we propose a novel method to solve these problems for mode varying coefficient model based on the B-spline approximation and SCAD penalty. Moreover, we present a new algorithm to estimate the parameters of interest, and discuss the parameters selection for the tuning parameters and bandwidth. We also establish the asymptotic properties of estimated coefficients under some regular conditions. Finally, we illustrate the proposed method by some simulation studies and an empirical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

The datasets generated during and analysed during the current study are available in the R package “mlbench”.

References

  • Cai ZW, Fan JQ, Li RZ (2000) Efficient estimation and inferences for varying-coefficient models. J Am Stat Assoc 95:888–902

    Article  MathSciNet  Google Scholar 

  • Fan JQ, Huang T (2005) Profile likelihood inferences on semiparametric varying-coefficient partially linear models. Bernoulli 11:1031–1057

    Article  MathSciNet  Google Scholar 

  • Fan JQ, Li RZ (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96:1348–1360

    Article  MathSciNet  Google Scholar 

  • Härdle W, Liang H, Gao J (2000) Partially linear models. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall, London

    MATH  Google Scholar 

  • Hastie T, Tibshirani R (1993) Varying-coefficient model. J R Stat Soc Ser B-Stat Methodol 55:757–796

    MathSciNet  MATH  Google Scholar 

  • Huang JHZ, Wu CO, Zhou L (2002) Varying-coefficient models and basis function approximation for the analysis of repeated measurements. Biometrika 89:111–128

    Article  MathSciNet  Google Scholar 

  • Hu T, Xia YC (2012) Adaptive semi-varying coefficient model selection. Stat Sin 22:575–599

    MathSciNet  MATH  Google Scholar 

  • Lee M (1989) Mode regression. J Econom 42:337–349

    Article  MathSciNet  Google Scholar 

  • Li Q, Racine JS (2010) Smooth varying-coefficient estimation and inference for qualitative and quantitative data. Economet Theory 26:1607–1637

    Article  MathSciNet  Google Scholar 

  • Ma XJ, Zhang JX (2016) A new variable selection approach for varying coefficient models. Metrika 79:59–72

    Article  MathSciNet  Google Scholar 

  • Schumaker L (1981) Spline functions: basic theory. Wiley, New York

    MATH  Google Scholar 

  • Stone C (1982) Optimal global rates of convergence for nonparametric regression. Ann Stat 10:1040–1053

    Article  MathSciNet  Google Scholar 

  • Tang YL, Wang HJ, Zhu ZY et al (2012) A unified variable selection approach for varying coefficient models. Stat Sin 22:601–628

    Article  MathSciNet  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the LASSO. J R Stat Soc Ser B-Stat Methodol 58:267–288

    MathSciNet  MATH  Google Scholar 

  • Wang HS, Xia YC (2009) Shrinkage estimation of the varying coefficient model. J Am Stat Assoc 104:747–757

    Article  MathSciNet  Google Scholar 

  • Xia YC, Li WK (1999) On the estimation and testing of functional-coefficient linearmodels. Stat Sin 9:735–757

    MATH  Google Scholar 

  • Yao WX, Lindsay BG, Li RZ (2012) Local modal regression. J Nonparametr Stat 24:647–663

    Article  MathSciNet  Google Scholar 

  • Yao WX, Li LH (2013) A new regression model: modal linear regression. Scand J Stat 41:656–671

    Article  MathSciNet  Google Scholar 

  • Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B-Stat Methodol 68:49–67

    Article  MathSciNet  Google Scholar 

  • Zhao PX, Xue LG (2009) Variable selection for semiparametric varying coefficient partially linear models. Stat Probabil Lett 79:2148–2157

    Article  MathSciNet  Google Scholar 

  • Zhao WH, Zhang RQ, Liu JC et al (2014) Robust and efficient variable selection for semiparametric partially linear varying coefficient model based on modal regression. Ann Inst Stat Math 66:165–191

    Article  MathSciNet  Google Scholar 

  • Zhang CH (2010) Nearly unbiased variable selection under minimax concave penalty. Ann Stat 38:894–942

    Article  MathSciNet  Google Scholar 

  • Zhang RQ, Zhao WH, Liu JC (2013) Robust estimation and variable selection for semiparametric partially linear varying coefficient model based on modal regression. J Nonparametr Stat 25:523–544

    Article  MathSciNet  Google Scholar 

  • Zhu HT, Li RZ, Kong LL (2003) Multivariate varying coefficent model for functional responses. Biometrics 59:263–273

    Article  MathSciNet  Google Scholar 

  • Zou H (2006) The adaptive LASSO and its oracle properties. J Am Stat Assoc 101:1418–1429

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the editor and two referees for their constructive suggestions. The research was supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20200854) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 20KJB110016).

Funding

The Natural Science Foundation of Jiangsu Province (Grant No. BK20200854) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 20KJB110016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Du.

Ethics declarations

Conflicts of interest/Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Code availability

The authors used R software and had custom code.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma A.1. Suppose conditions (C1)-(C4) hold, \(\varvec{\gamma }^{best}\) is the best approximation of \(\varvec{\gamma }\), and \(\epsilon _1\), \(a_1\), \(a_2\) are positive constants, such that

  1. (1)

    \(\vert \vert \varvec{\gamma }_{j*}^{best} \vert \vert _{L_2} >\epsilon _1,j=1,\ldots ,v\), \(\varvec{\gamma }_j^{best}=(\gamma _{j1},\varvec{0}_{q-1}^{\top })^{\top },j=v+1,\ldots ,s\), \(\varvec{\gamma }_j^{best}=\varvec{0},j=s+1,\ldots ,p\).

  2. (2)

    \(\sup \vert \alpha _j(U) - \varvec{B}(U)^{\top } \varvec{\gamma }_j^{best} \vert \le a_1 k_n^{-t}, j=1,\ldots ,v\)

  3. (3)

    \(\sup \vert \varvec{\Pi }^{\top } \varvec{\gamma }^{best} -\varvec{X}\varvec{\alpha }(U) \vert \le a_2k_n^{-t}\)

Lemma A.2. Let \(\delta =O\,(n^{-t/(2t+1)})\). Define \(\varvec{\gamma }=\varvec{\gamma }^{best}+\delta \varvec{v}\), given \(\rho >0\), there exists a large C such that ( Zhao et al. (2014))

$$\begin{aligned} P\{\sup _{\vert \vert \varvec{v} \vert \vert =C} l(\varvec{\gamma }) < l(\varvec{\gamma }^{best})\} \le 1-\rho \end{aligned}$$

Proof 1. Proof of Theorem 1 Similar to the proof of Theorem 1 in Zhao et al. (2014), let

$$\begin{aligned} a_n= & {} \max _{j} \{\vert p^{'}_{\lambda _{1j}}(\vert \vert \varvec{\gamma }_{j*} \vert \vert _{L_2}) \vert , \vert p^{'}_{\lambda _{2j}}(\vert \gamma _{j1} \vert ) \vert :\vert \vert \varvec{\gamma }_{j*} \vert \vert _{L_2} \ne 0, \vert \gamma _{j1} \vert \ne 0\},\\ b_n= & {} \max _{j} \{\vert p^{''}_{\lambda _{1j}}(\vert \vert \varvec{\gamma }_{j*} \vert \vert _{L_2})\vert , \vert p^{''}_{\lambda _{2j}}(\vert \gamma _{j1} \vert ) \vert :\vert \vert \varvec{\gamma }_{j*} \vert \vert _{L_2} \ne 0, \vert \gamma _{j1} \vert \ne 0 \}. \end{aligned}$$

As \(b_n \rightarrow 0\), we have \(\vert \vert \hat{\varvec{\gamma }} -\varvec{\gamma }^{best} \vert \vert = O_p(n^{-t/(2t+1)} + a_n)\) by the Lemma A.2.. Therefore

$$\begin{aligned} \begin{aligned}&\vert \vert {\hat{\alpha }}_j(U) -\alpha _j(U) \vert \vert _{L_2}^2 \\&\quad = \sum _{i=1}^{n}({\hat{\alpha }}_j(U_i) - \alpha _j(U_i))^2\\&\quad =\int _{0}^{1} ({\hat{\alpha }}_j(U) -\alpha _j(U))^2 dU \\&\quad =\int _{0}^{1} (\varvec{B}(U)^{\top } \hat{\varvec{\gamma }}_j - \varvec{B}(U)^{\top } \varvec{\gamma }^{best}_j + \varvec{B}(U)^{\top } \varvec{\gamma }^{best}_j - \alpha _j(U))^2 dU \\&\quad \le 2 \int _{0}^{1} ((\varvec{B}(U)^{\top } \hat{\varvec{\gamma }}_j - \varvec{B}(U)^{\top } \varvec{\gamma }^{best}_j)^2 dU + 2 \int _{0}^{1} (\varvec{B}(U)^{\top } \varvec{\gamma }^{best}_j - \alpha _j(U))^2 dU\\&\quad = 2(\hat{\varvec{\gamma }}_j - \varvec{\gamma }^{best}_j)^{\top } \int _{0}^{1}{\varvec{B}(U) \varvec{B}(U)^{\top }}dU (\hat{\varvec{\gamma }}_j - \varvec{\gamma }^{best}_j) + 2 \int _{0}^{1} (\varvec{B}(U)^{\top } \varvec{\gamma }^{best}_j - \alpha _j(U))^2 dU \end{aligned} \end{aligned}$$

Because \(\vert \vert \int _{0}^{1}{\varvec{B}(U) \varvec{B}(U)^{\top }} dU \vert \vert =O(1)\), we have

$$\begin{aligned} (\hat{\varvec{\gamma }}_j - \varvec{\gamma }^{best}_j)^{\top } \int _{0}^{1}{\varvec{B}(U) \varvec{B}(U)^{\top }} dU (\hat{\varvec{\gamma }}_j - \varvec{\gamma }^{best}_j) =O_p(n^{-2t/(2t+1)} + a_n^2) \end{aligned}$$

And according to the Lemma A.1., we have

$$\begin{aligned} \int _{0}^{1} (\varvec{B}(U)^{\top } \varvec{\gamma }^{best}_j - \alpha _j(U))^2 dU =O_p(n^{-2t/(2t+1)}) \end{aligned}$$

Consequently, the proof has been completed. \(\square\)

Proof 2. Proof of Theorem 2 By the property of SCAD, we know that \(\max \{\lambda _{1j},\lambda _{2j}\} \rightarrow 0\) as \(n \rightarrow \infty\), then \(a_n=0\), then by Theorem 1, we have \(\vert \vert \varvec{\gamma } -\varvec{\gamma }^{best} \vert \vert =O_p(n^{-t/2t+1})\)

Firstly, if \(\varvec{\gamma }_{j*}=0\), it is clear that \(\alpha _j(U)\) is a constant. If \(\varvec{\gamma }_{j*} \ne 0\), we have

$$\begin{aligned} \begin{aligned} \frac{\partial l_1(\varvec{\gamma })}{\partial {\varvec{\gamma }_{j*}}} =&\sum _{i=1}^{n}K_{h}^{'}(Y_i-\varvec{\Pi }_i^{\top } \varvec{\gamma }) X_i^{(j)}\bar{\varvec{B}}(U_i) + np^{'}_{\lambda _{1j}} (\vert \vert \varvec{\gamma }_{j*} \vert \vert _{L_2})\\&(sign\,(\gamma _{j,2})|\gamma _{j,2}|,\ldots ,sign(\gamma _{j,q})|\gamma _{j,q}|)^{\top }\\ =&\sum _{i=1}^{n}\Big \{K_{h}^{'}(\epsilon _i + D_{ni})X_i^{(j)}\bar{\varvec{B}}(U_i) + K_{h}^{''}(\epsilon _i+ D_{ni})X_i^{(j)}\bar{\varvec{B}}(U_i)[\varvec{\Pi }_i^{\top }( \varvec{\gamma } - \varvec{\gamma }^{best} )] \\&+ K_{h}^{'''}(\eta _i)X_i^{(j)}\bar{\varvec{B}}(U_i) [\varvec{\Pi }_i^{\top }(\varvec{\gamma } -\varvec{\gamma }^{best})]^2 \Big \} + np^{'}_{\lambda _{1j}}(\vert \vert \varvec{\gamma }_{j*} \vert \vert _{L_2})\\&(sign(\gamma _{j,2})|\gamma _{j,2}|,\ldots ,sign(\gamma _{j,q})|\gamma _{j,q}|)^{\top }\\ =&n\lambda _{1j}\Big [O_p(\lambda _{1j}^{-1} \bar{\varvec{B}}(U_i) n^{-\frac{t}{2t+1}}) +\lambda _{1j}^{-1}np^{'}_{\lambda _{1j}}(\vert \vert \varvec{\gamma }_{j*} \vert \vert _{L_2})\\&(sign(\gamma _{j,2})|\gamma _{j,2}|,\ldots , sign(\gamma _{j,q})|\gamma _{j,q}|)^{\top }\Big ] \end{aligned} \end{aligned}$$

where \(\eta _i\) is between \(Y_i-\varvec{\Pi }_i^{\top } \varvec{\gamma }\) and \(\epsilon _i + D_{ni}\), \(\epsilon _i=Y_i-\varvec{X}_i^{\top } \varvec{\alpha }(U_i)\), \(D_{ni}= \varvec{X}_i^{\top } \varvec{\alpha }(U_i)- \varvec{\Pi }_i^{\top }\varvec{\gamma }^{best}\).

As we all know, \(\sup _{u} \vert \vert \bar{\varvec{B}}(U) \vert \vert =O(1)\), and by condition (C4) \(n^{t/(2t+1)}\min \{\lambda _{1j},\lambda _{2j}\} \rightarrow \infty\) and \({\lim \inf }_{n \rightarrow \infty } {\lim \inf }_{\vert \vert \varvec{\gamma }_{j*} \vert \vert _{L_2} \rightarrow 0^{+}} \frac{p_{\lambda _{1j}}^{'}(\vert \vert \varvec{\gamma }_{j*} \vert \vert _{L_2})}{\lambda _{1j}} >0 ,j=s+1, \ldots ,p\), we prove that the sign of the derivation is completely determined by the second part of the derivation. Hence, with the Lemma A.2. \(l_1(\varvec{\gamma })\) gets its minimizer at \(\hat{\varvec{\gamma }}_{j*}^{VC} =0\), and \({\hat{\alpha }}_j(U)\approx {\hat{\gamma }}_{j1}^{VC} + \bar{\varvec{B}}^{\top }(U) \hat{\varvec{\gamma }}_{j*}^{VC} = {\hat{\gamma }}_{j1}^{VC}\), i.e. \({\hat{\alpha }}_j(U), j=v+1,\ldots ,p\) are constants.

Secondly, since we have proved \({\hat{\alpha }}_j,j=v+1,\ldots ,p\) are constant, we only need to prove \({\hat{\gamma }}_{j1}^{CZ}=0\) to obtain \({\hat{\alpha }}_j=0,\) for \(j=s+1,\ldots ,p\).

$$\begin{aligned} \begin{aligned} \frac{\partial l_2(\varvec{\gamma })}{\partial {\gamma _{j1}}}&=\sum _{i=1}^{n}K_h^{'}(Y_i-\varvec{\Pi }_i^{\top } \varvec{\gamma })X_i^{(j)}B_1(U_i) + np^{'}_{\lambda _{2j}}(\vert \gamma _{j1} \vert )sgn(\gamma _{j1})\\ =&\sum _{i=1}^{n}\Big \{K_h^{'}(\epsilon _i + D_{ni})X_i^{(j)}B_1(U_i) + K_h^{''}(\epsilon _i+ D_{ni})X_i^{(j)}B_1(U_i)[\varvec{\Pi }_i^{\top }(\varvec{\gamma } -\varvec{\gamma }^{best})] \\&+ K_h^{'''}(\eta _i)X_i^{(j)}B_1(U_i)[\varvec{\Pi }_i^{\top }(\varvec{\gamma } -\varvec{\gamma }^{best})]^2 \Big \} + np^{'}_{\lambda _{2j}}(\vert \gamma _{j1}\vert )sgn(\gamma _{j1})\\ =&n\lambda _{2j}[O_p(\lambda _{2j}^{-1} n^{-\frac{t}{2t+1}}) +\lambda _{2j}^{-1}p^{'}_{\lambda _{2j}}(\vert \gamma _{j1}\vert )sgn(\gamma _{j1}) ] \end{aligned} \end{aligned}$$

where \(\eta _i\) is between \(Y_i-\varvec{\Pi }_i^{\top } \varvec{\gamma }\) and \(\epsilon _i + D_{ni}\), \(\epsilon _i=Y_i-\varvec{X}_i^{\top } \varvec{\alpha }(U_i)\), \(D_{ni}= \varvec{X}_i^{\top } \varvec{\alpha }(U_i)- \varvec{\Pi }_i^{\top }\varvec{\gamma }^{best}\).

By condition (C4) \(n^{t/(2t+1)}\min \{\lambda _{1j},\lambda _{2j}\} \rightarrow \infty\) and \({\lim \inf }_{n \rightarrow \infty } {\lim \inf }_{\gamma _{j1} \rightarrow 0^{+}} \frac{p_{\lambda _{2j}}^{'}(|\alpha _{j1}|)}{\lambda _{2j}} >0 ,j=s+1, \ldots ,p\), we prove

$$\begin{aligned} \frac{\partial l_2(\varvec{\gamma })}{\partial {\gamma _{j1}}}< & {} 0\quad when \quad -\delta<{\hat{\gamma }}_{j1}^{CZ}<0\\ \frac{\partial l_2(\varvec{\gamma })}{\partial {\gamma _{j1}}}> & {} 0\quad when \quad 0< {\hat{\gamma }}_{j1}^{CZ} < \delta \end{aligned}$$

where \(\delta =O(n^{-t/(2t+1)})\). Hence, \(l_2(\varvec{\gamma })\) gets its minimizer at \({\hat{\gamma }}_{j1}^{CZ} =0\), i.e. \({\hat{\alpha }}_j=0,j=s+1,\ldots ,p\). \(\square\)

Proof 3. Proof of Theorem 3 Let \(\hat{\varvec{\gamma }}=(\hat{\varvec{\gamma }}_{v}^{\top }, \hat{\varvec{\gamma }}_{s-v}^{\top },0)^{\top }\), where \(\hat{\varvec{\gamma }}_{v}^{\top }=(\hat{\varvec{\gamma }}_0, \ldots , \hat{\varvec{\gamma }}_{v})^{\top }, \hat{\varvec{\gamma }}_{s-v}^{\top }=({\hat{\gamma }}_{v+1,1},\ldots , {\hat{\gamma }}_{s,1})\), and for simplicity of notations, let \(\hat{\varvec{\gamma }}_{s-v}^{\top }=({\hat{\gamma }}_{v+1},\ldots , {\hat{\gamma }}_{s})\). From Theorems 1 and 2, we know that as \(n \rightarrow \infty\), with probability tending to 1, \(l(\varvec{\gamma })\) attain the minimal value at \(\hat{\varvec{\gamma }}\), let \(L_1=\frac{\partial l(\varvec{\gamma })}{\partial \varvec{\gamma }_{s-v}}\), \(L_2=\frac{\partial l(\varvec{\gamma })}{\partial \varvec{\gamma }_{v}}\), we know that

$$\begin{aligned} \begin{aligned} L_1(\hat{\varvec{\gamma }})&= \sum _{i=1}^{n}\varvec{X}_{ci}B_1(U_i) K_h^{'}(Y_i-\varvec{\Pi }_i^{\top } \hat{\varvec{\gamma }}) + np^{'}_{\lambda _{2}}(\vert \hat{\varvec{\gamma }}_{s-v} \vert ) {\circ } sgn(\hat{\varvec{\gamma }}_{s-v})\\&=\sum _{i=1}^{n}\varvec{X}_{ci} K_h^{'}(Y_i-\varvec{\Pi }_{vi}^{\top } \hat{\varvec{\gamma }}_{v}- \varvec{X}_{ci}^{\top } \hat{\varvec{\gamma }}_{s-v} ) + np^{'}_{\lambda _{2}}(\vert \hat{\varvec{\gamma }}_{s-v} \vert ) {\circ } sgn(\hat{\varvec{\gamma }}_{s-v}) \end{aligned} \end{aligned}$$
(8)

and

$$\begin{aligned} \begin{aligned} L_2(\hat{\varvec{\gamma }})=\sum _{i=1}^{n}\varvec{\Pi }_{vi} K_h^{'}(Y_i-\varvec{\Pi }_{vi}^{\top } \hat{\varvec{\gamma }}_{v}- \varvec{X}_{ci}^{\top } \hat{\varvec{\gamma }}_{s-v} ) + \varvec{\kappa } \end{aligned} \end{aligned}$$
(9)

where “\({\circ }\)” denotes the Hadamard (componentwise) product and the k-th component of \(p^{'}_{\lambda _{2}}(\vert \hat{\varvec{\gamma }}_{s-v} \vert )\) is \(p^{'}_{\lambda _{2k}}(\vert {\hat{\gamma }}_{k} \vert )\), \(v+1 \le k \le s\). The j-th block subvector of \(\varvec{\kappa }\) is \(p^{'}_{\lambda _{1j}}(\vert \vert \varvec{\gamma }_{j*}\vert \vert _{L_2})\)

\(\Big (\frac{p^{'}_{\lambda _{2j}}(\vert {\hat{\gamma }}_{j} \vert )}{p^{'}_{\lambda _{1j}}(\vert \vert \varvec{\gamma }_{j*}\vert \vert _{L_2})}sign(\gamma _{j,1}), sign(\gamma _{j,2})\vert \gamma _{j,2}\vert ,\ldots ,sign(\gamma _{j,q})\vert \gamma _{j,q} \vert \Big )^{\top }\), \(0 \le\, j \,\le v\). Applying the Taylor expansion to \(p^{'}_{\lambda _{2k}}(\vert {\hat{\gamma }}_{k} \vert )\),

$$\begin{aligned} p^{'}_{\lambda _{2k}}(\vert {\hat{\gamma }}_{k} \vert )=p^{'}_{\lambda _{2k}}(\vert \gamma _{k}^{best} \vert ) +[p^{''}_{\lambda _{2k}}(\vert \gamma _{k}^{best} \vert )+o_p(1)]({\hat{\gamma }}_{k}-\gamma _{k}^{best}), v+1 \le k \le s \end{aligned}$$

Note that \(p^{'}_{\lambda _{2k}}(\vert {\hat{\gamma }}_{k}^{best} \vert )=0\) as \(\lambda _{max} \rightarrow 0\) and \(b_n \rightarrow 0\), as for (8) we have

$$\begin{aligned} \begin{aligned} \frac{1}{n}&\sum _{i=1}^{n}\varvec{X}_{ci}\Big \{ K_h^{'}(\epsilon _i)+K_h^{''}(\epsilon _i)\{\varvec{X}_i^{\top }\varvec{R}(U_i)- [\varvec{X}_{ci}^{\top }(\hat{\varvec{\gamma }}_{s-v}- \varvec{\gamma }_{s-v}^{best})+\varvec{\Pi }_{vi}(\hat{\varvec{\gamma }}_{v}- \varvec{\gamma }_{v}^{best})]\}\\&+K_h^{'''}(\xi _i)\{\varvec{X}_i^{\top }\varvec{R}(U_i)- [\varvec{X}_{ci}^{\top }(\hat{\varvec{\gamma }}_{s-v}- \varvec{\gamma }_{s-v}^{best})+\varvec{\Pi }_{vi}(\hat{\varvec{\gamma }}_{v}- \varvec{\gamma }_{v}^{best})]\}^2 \Big \}+o_p(\hat{\varvec{\gamma }}_{s-v}- \varvec{\gamma }_{s-v}^{best}) \end{aligned} \end{aligned}$$
(10)

where \(\varvec{R}(U_i)=(R_0(U_i),\ldots , R_v(U_i))^{\top }\), \(R_j(U_i)=\alpha _j(U_i) - \varvec{B}(U_i)^{\top } \varvec{\gamma }_j^{best}, 0\le j \le v\), and \(\xi _i\) between \(\epsilon _i\) and \(Y_i-\varvec{\Pi }_i^{\top } \hat{\varvec{\gamma }}\).

From Theorem 3 in Zhao et al. (2014), we know that

$$\begin{aligned} \begin{aligned} \hat{\varvec{\gamma }}_{v}- \varvec{\gamma }_{v}^{best}=-(\Phi +O_p(1))^{-1}\Psi (\hat{\varvec{\gamma }}_{s-v}- \varvec{\gamma }_{s-v}^{best})+ (\Phi +o_p(1))^{-1}\Gamma _n \end{aligned} \end{aligned}$$
(11)

where \(\Psi =E(K^{''}_h(\epsilon )\varvec{\Pi }_{v}\varvec{X}_{c}^{\top })\), \(\Phi =E(K^{''}_h(\epsilon )\varvec{\Pi }_{v}\varvec{\Pi }_{v}^{\top })\) and \(\Gamma _n=\frac{1}{n}\sum _{i=1}^{n}\varvec{\Pi }_{vi}\{K_h^{'}(\epsilon _i) + K_h^{''}(\epsilon _i)\varvec{X}_{vi}^{\top }\varvec{R}(U_i)\}\).

Substituing (11) into (10), we obtain

$$\begin{aligned} \begin{aligned}&\frac{1}{n}\sum _{i=1}^{n}K_h{''}(\epsilon _i)\varvec{X}_{ci}\{ \varvec{X}_{ci}- \Psi ^{\top }\Phi ^{-1}\varvec{\Pi }_{vi}\}^{\top }(\hat{\varvec{\gamma }}_{s-v}- \varvec{\gamma }_{s-v}^{best})+o_p(\hat{\varvec{\gamma }}_{s-v}- \varvec{\gamma }_{s-v}^{best})\\&\quad =\frac{1}{n}\sum _{i=1}^{n}\varvec{X}_{ci}\Big \{K_h{'}(\epsilon _i)+K_h{''}(\epsilon _i)\varvec{X}_{vi}^{\top }\varvec{R}(U_i)- K_h{''}(\epsilon _i)\varvec{\Pi }_{vi}^{\top }\frac{1}{n}\sum _{j=1}^{n}\Phi ^{-1}\varvec{\Pi }_{vj}K_h{'}(\epsilon _j)\Big \}\\&\qquad -\frac{1}{n}\sum _{i=1}^{n}\varvec{X}_{ci}K_h{''}(\epsilon _i)\varvec{\Pi }_{vi}^{\top }\frac{1}{n}\sum _{j=1}^{n}\varvec{X}_{vj}^{\top }\varvec{R}(U_j) \end{aligned} \end{aligned}$$
(12)

Note that

$$\begin{aligned}&E\Big \{\frac{1}{n}\sum _{i=1}^{n}K_h{''}(\epsilon _i)\Psi ^{\top }\Phi ^{-1}\varvec{\Pi }_{vi}[\varvec{X}_{ci}^{\top } -\varvec{\Pi }_{vi}^{\top }\Phi ^{-1}\Psi ] \Big \}=0\\&Var \Big \{\frac{1}{n}\sum _{i=1}^{n}K_h{''}(\epsilon _i)\Psi ^{\top }\Phi ^{-1}\varvec{\Pi }_{vi}[\varvec{X}_{ci}^{\top } -\varvec{\Pi }_{vi}^{\top }\Phi ^{-1}\Psi ] \Big \}=o_p(1/n) \end{aligned}$$

Hence

$$\begin{aligned} \begin{aligned}&\Big \{\frac{1}{n}\sum _{i=1}^{n}K_h{''}(\epsilon _i)\tilde{\varvec{X}}_{ci}\tilde{\varvec{X}}_{ci}^{\top } +o_p(1) \Big \}\sqrt{n}(\hat{\varvec{\gamma }}_{s-v}- \varvec{\gamma }_{s-v}^{best})\\&\quad =\Big \{\frac{1}{n}\sum _{i=1}^{n}K_h{''}(\epsilon _i)\tilde{\varvec{X}}_{ci}\tilde{\varvec{X}}_{ci}^{\top } +o_p(1) \Big \}\sqrt{n}(\hat{\varvec{\gamma }}_{s-v}- \varvec{\gamma }_{s-v})\\&\quad =\frac{1}{\sqrt{n}}\sum _{i=1}^{n}\tilde{\varvec{X}}_{ci}K_h{'}(\epsilon _i)+\frac{1}{\sqrt{n}}\sum _{i=1}^{n}\tilde{\varvec{X}}_{ci}K_h{''}(\epsilon _i) \varvec{X}_{vi}^{\top }\,\varvec{R}(U_i) =J_1+J_2 \end{aligned} \end{aligned}$$
(13)

From Theorem 3 in Zhao et al. (2014), we know that \(J_2=o_p(1)\), and

$$\begin{aligned}&\frac{1}{n}K_h{''}(\epsilon _i)\tilde{\varvec{X}}_{ci}\tilde{\varvec{X}}_{ci}^{\top } \overset{P}{\rightarrow } \Sigma \nonumber \\&J_1 \overset{d}{\rightarrow } N(0,\Delta ) \end{aligned}$$
(14)

where \(\Delta =E(G(\varvec{x},u,h)\tilde{\varvec{X}}_{c} \tilde{\varvec{X}}_{c}^{\top })\). Then combining (13) and (14) and using the Slutsky’s theorem, it follows that

$$\begin{aligned} \begin{aligned} \sqrt{n}(\hat{\varvec{\gamma }}_{s-v}- \varvec{\gamma }_{s-v}) \overset{d}{\rightarrow } N(0,\Sigma ^{-1}\Delta \Sigma ^{-1}) \end{aligned} \end{aligned}$$
(15)

It’s clearly that \(\hat{\varvec{\alpha }}_c - \varvec{\alpha }_c= \hat{\varvec{\gamma }}_{s-v}- \varvec{\gamma }_{s-v}\), so we complete the proof of Theorem 3. And the proof of (14) can be found in Zhao et al. (2014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Du, Y. & Wang, J. Model detection and variable selection for mode varying coefficient model. Stat Methods Appl 31, 321–341 (2022). https://doi.org/10.1007/s10260-021-00576-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-021-00576-4

Keywords

Mathematics Subject Classification

Navigation