Skip to main content
Log in

Quasi-maximum likelihood estimation of short panel data models with time-varying individual effects

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

Since the commonly available time series on micro units are typically quite short, this paper considers a different estimation of linear panel data models where the unobserved individual effects are permitted to have time-varying effects on the response variable. We allow flexible possible correlations between included regressors and unobserved individual effects, and the model can accommodate both time varying and time invariant covariates. The quasi-maximum likelihood method is then proposed to obtain the estimates, which are easily executed by a simple iterative method. Two types of approaches to estimate the covariance matrix are introduced. The large sample properties are established when \(n\rightarrow \infty \) and T is fixed. The estimates are efficient when both the individual effects and random errors follow normal distributions. Simulation studies show that our estimates perform well even when the correlations between the regressors and unobserved individual effects are misspecified. The proposed method is further illustrated by applications to a real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahn SC, Lee YH, Schmidt P (2001) GMM estimation of linear panel data models with time-varying individual effects. J Econom 101:219–255

    Article  MathSciNet  Google Scholar 

  • Ahn SC, Lee YH, Schmidt P (2013) Panel data models with multiple time-varying individual effects. J Econom 174:1–14

    Article  MathSciNet  Google Scholar 

  • Bai J (2009) Panel data models with interactive fixed effects. Econometrica 77:1229–1279

    Article  MathSciNet  Google Scholar 

  • Bai J (2013) Likelihood approach to dynamic panel models with interactive effects. Mimeo. https://doi.org/10.2139/ssrn.2332992

    Article  Google Scholar 

  • Bai J, Li K (2014) Theory and methods of panel data models with interactive effects. Ann Stat 42:142–170

    Article  MathSciNet  Google Scholar 

  • Battese GE, Harter RM, Fuller WA (1988) An error-components model for prediction of country crop areas using survey and satellite data. J Am Stat Assoc 83:28–36

    Article  Google Scholar 

  • Bettis C, Bizjak J, Coles J, Kalpathy S (2010) Stock and option grants with performance-based vesting provisions. Soc Sci Electron Publ 23(10):3849–3888

    Google Scholar 

  • Breitung J, Hansen P (2021) Alternative estimation approaches for the factor augmented panel data model with small T. Empir Econ 60:327–351

    Article  Google Scholar 

  • Brown JR, Petersen BC (2011) Cash holding and R&D smoothing. J Corp Finance 17(4):694–709

    Article  Google Scholar 

  • Chudik A, Pesaran M, Tosetti E (2011) Weak and strong cross-section dependence and estimation of large panels. Econom J 14:C45CC90

    Article  MathSciNet  Google Scholar 

  • Demir F (2009) Financial liberalization, private investment and portfolio choice: Financialization of real sectors in emerging markets. J Dev Econ 88(2):314–324

    Article  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM-algorithm. J R Stat Soc B 39:1–38

    MathSciNet  MATH  Google Scholar 

  • Engle RF, McFadden DL (1994) Handbook of econometrics, vol IV. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Friedberg L (1998) Did unilatreral divorce raise divorce rates? Evidence from panel data. Am Econ Rev 88:608–627

    Google Scholar 

  • Hayakawa K (2012) GMM estimation of short dynamic panel data models with interactive fixed effects. J Japan Stat Soc 42:109–123

    Article  Google Scholar 

  • Hayakawa K, Pesaran MH, Smith LV (2018) Short T dynamic panel data models with individual and interactive time effects. Working paper

  • Hsiao C (1986) Analysis of panel data. Cambridge University Press, New York

    MATH  Google Scholar 

  • Huang XH, Wu QS, Wang Y (2018) Financial asset allocation and financial risks of enterprises: ‘precautions’ or ‘bartering’. J Finance Econ 12:100–112

  • Juodis A (2018) Pesudo panel data models with cohort interactive effects. J Bus Econ Stat 36:47–61

    Article  MathSciNet  Google Scholar 

  • Juodis A, Sarafidis V (2018) Fixed T dynamic panel data estimators with multifactor errors. Econom Rev 37:893–929

    Article  MathSciNet  Google Scholar 

  • Juodis A, Sarafidis V (2020) A linear estimator for factor-augmented fixed-T panels with endogenous regressors. J Bus Econ Stat. https://doi.org/10.1080/07350015.2020.1766469 forthcoming

  • Karabıyık H, Urbain J-P, Westerlund J (2019) CCE estimation of factor-augmented regression models with more factors than observables. J Appl Econom 34:268–284

    Article  MathSciNet  Google Scholar 

  • Karagiannis G, Tzouvelekas V (2007) A flexible time-varying specification of the technical inefficiency effects model. Empir Econ 33:531–540

    Article  Google Scholar 

  • Kliman A, Williams SD (2015) Why ‘financialisation’ hasn’t depressed US productive investment. Camb J Econ 39(1):67–92

    Article  Google Scholar 

  • Kruiniger H (2020) Identification without assuming mean stationary: quasi-maximum likelihood estimation of dynamic panel models with endogenous regressors. Econom J (forthcoming)

  • Lin KH, Tomaskovic-Devey D (2013) Financialization and US income inequality 1970–2008. Am J Sociol 118(5):1284–1329

    Article  Google Scholar 

  • Meng X, Rubin DB (1993) Maxmum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80:267–278

    Article  MathSciNet  Google Scholar 

  • Nauges C, Thomas A (2003) Consistent estimation of dynamic panel data models with time-varying individual effects. Ann Econ Stat 70:53–75

    Google Scholar 

  • Pesaran MH (2006) Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica 74:967–1012

    Article  MathSciNet  Google Scholar 

  • Robertson D, Sarafidis V (2015) IV estimation of panels with factor residuals. J Econom 185:526–541

    Article  MathSciNet  Google Scholar 

  • Westerlund J, Petrova Y, Norkutė M (2019) CCE in fixed-T panels. J Appl Econom 34:746–761

    Article  MathSciNet  Google Scholar 

  • White H (1994) Estimation, inference and specification analysis. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgements

The authors deeply thank the editor in chief Hajo Holzmann and the anonymous referee for helpful comments and suggestions. The research is supported by National Science Foundation of China (Grant 71873085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Theoretical proofs

Appendix: Theoretical proofs

In this section, we give the proofs of Theorem 1 and 2.

Proof of Theorem 1

To distinguish between the arguments in the log quasi-likelihood function \(\ell ({\varvec{\mu }}, {\varvec{\beta }}, \Omega )\) and the true values of the parameters, we use \({\varvec{\mu }}_0\), \({\varvec{\beta }}_0\) and \(\Omega _0\) to denote the true values of \({\varvec{\mu }}\), \({\varvec{\beta }}\) and \(\Omega \) only in the proof of this theorem.

It follows by (2.3) that

$$\begin{aligned} A({\varvec{\beta }}_0)\mathbf{z}_i= {\varvec{\mu }}_0 + \Lambda _0 {\varvec{\alpha }}_i + \mathbf{e}_i, \end{aligned}$$

and then

$$\begin{aligned}&\frac{1}{n}\sum \limits _{i=1}^n \mathbf{z}_i = [A({\varvec{\beta }}_0)]^{-1} {\varvec{\mu }}_0 + o_P(1),\\&\frac{1}{n}\sum \limits _{i=1}^n \mathbf{z}_i \mathbf{z}_i^{'} = [A({\varvec{\beta }}_0)]^{-1} \{ {\varvec{\mu }}_0 {\varvec{\mu }}_0^{'} + \Omega _0\}[A^{'}({\varvec{\beta }}_0)]^{-1} + o_P(1), \end{aligned}$$

by law of large numbers. Therefore,

$$\begin{aligned}&\frac{1}{n}\sum \limits _{i=1}^n [A({\varvec{\beta }})\mathbf{z}_i - {\varvec{\mu }}] [A({\varvec{\beta }})\mathbf{z}_i - {\varvec{\mu }}]^{'} \\&\quad = \frac{1}{n}\sum \limits _{i=1}^n A({\varvec{\beta }})\mathbf{z}_i \mathbf{z}_i^{'} A^{'}({\varvec{\beta }}) - \frac{1}{n} \sum \limits _{i=1}^n A({\varvec{\beta }})\mathbf{z}_i {\varvec{\mu }}^{'} - \frac{1}{n} \sum \limits _{i=1}^n {\varvec{\mu }}\mathbf{z}_i^{'} A^{'}({\varvec{\beta }}) + {\varvec{\mu }}{\varvec{\mu }}^{'} \\&\quad = A({\varvec{\beta }})[A({\varvec{\beta }}_0)]^{-1} \Omega _0[A^{'}({\varvec{\beta }}_0)]^{-1}A^{'}({\varvec{\beta }}) \\&\qquad + \Big \{ A({\varvec{\beta }})[A({\varvec{\beta }}_0)]^{-1} {\varvec{\mu }}_0 - {\varvec{\mu }}\Big \} \Big \{ A({\varvec{\beta }})[A({\varvec{\beta }}_0)]^{-1} {\varvec{\mu }}_0 - {\varvec{\mu }}\Big \}^{'} + o_P(1). \end{aligned}$$

Moreover, we obtain by straightforward calculations that uniformly for any \({\varvec{\mu }}\), \({\varvec{\beta }}\) and \(\Omega \) in the compact supports,

$$\begin{aligned} \frac{1}{n} \ell ({\varvec{\mu }}, {\varvec{\beta }}, \Omega )= & {} -\frac{T(p+1)}{2}\log 2\pi -\frac{1}{2}\log |\Omega | \nonumber \\&- \frac{1}{2}\text{ tr }\Big ([A({\varvec{\beta }}_0)]^{-1} \Omega _0[A^{'}({\varvec{\beta }}_0)]^{-1} A^{'}({\varvec{\beta }})\Omega ^{-1}A({\varvec{\beta }})\Big ) \nonumber \\&- \frac{1}{2} \Big \{ A({\varvec{\beta }})[A({\varvec{\beta }}_0)]^{-1} {\varvec{\mu }}_0 - {\varvec{\mu }}\Big \}^{'}\Omega ^{-1} \Big \{ A({\varvec{\beta }})[A({\varvec{\beta }}_0)]^{-1} {\varvec{\mu }}_0 - {\varvec{\mu }}\Big \} + o_P(1) \nonumber \\= & {} \frac{1}{n}E[\ell ({\varvec{\mu }}, {\varvec{\beta }}, \Omega )] + o_P(1) \end{aligned}$$
(A.1)

by Assumption 3 and Lemma 2.4 of Chapter 36 (Engle and McFadden 1994).

Let \(Q({\varvec{\mu }}, {\varvec{\beta }}, \Omega )=\frac{1}{n}E[\ell ({\varvec{\mu }}, {\varvec{\beta }}, \Omega )]\). In the following, we will show the uniqueness of maximizer, that is \( Q({\varvec{\mu }}, {\varvec{\beta }}, \Omega ) - Q({\varvec{\mu }}_0, {\varvec{\beta }}_0, \Omega _0)<0\) for any \(({\varvec{\mu }}, {\varvec{\beta }}, \Omega )\) in the complement of an open neighborhood of \(({\varvec{\mu }}_0, {\varvec{\beta }}_0, \Omega _0)\).

Define an auxiliary model: \(Y_i^*= \mu _0 + \mathbf{e}_i\), with \(\mathbf{e}_i \sim (\mathbf{0}, \Omega _0)\), and \(Y_i^*=A({\varvec{\beta }}_0)\mathbf{z}_i\) with \({\varvec{\beta }}_0\) being known. Then its log quasi-likelihood function is

$$\begin{aligned} \ell _a({\varvec{\mu }}, \Omega )= -\frac{nT(p+1)}{2}\log 2\pi - \frac{n}{2}\log |\Omega | - \frac{1}{2}\sum \limits _{i=1}^n [ A({\varvec{\beta }}_0)\mathbf{z}_i - {\varvec{\mu }}]^{'}\Omega ^{-1} [ A({\varvec{\beta }}_0)\mathbf{z}_i - {\varvec{\mu }}] \end{aligned}$$

Set \(Q_a(\Omega )= \max _{{\varvec{\mu }}} \frac{1}{n} E_a[\ell _a({\varvec{\mu }}, \Omega )]\), where \(E_a\) is the expectation under the auxiliary model. Then it can be easily shown that

$$\begin{aligned} Q_a(\Omega )=-\frac{T(p+1)}{2}\log 2\pi - \frac{1}{2}\log |\Omega | - \frac{1}{2}\text{ tr }(\Omega ^{-1}\Omega _0). \end{aligned}$$

It follows by Jensen inequality, for all \(\Omega \) in the compact support, \(Q_a(\Omega )\le \frac{1}{n} E_a [\ell _a ({\varvec{\mu }}_0, \Omega _0)] =Q_a(\Omega _0)\). Hence,

$$\begin{aligned}&Q({\varvec{\mu }}, {\varvec{\beta }}, \Omega ) - Q({\varvec{\mu }}_0, {\varvec{\beta }}_0, \Omega _0) \\&\quad = Q_a(\Omega )- Q_a(\Omega _0) - \frac{1}{2} \Big \{ A({\varvec{\beta }})[A({\varvec{\beta }}_0)]^{-1} {\varvec{\mu }}_0 - {\varvec{\mu }}\Big \}^{'}\Omega ^{-1} \Big \{ A({\varvec{\beta }})[A({\varvec{\beta }}_0)]^{-1} {\varvec{\mu }}_0 - {\varvec{\mu }}\Big \} \\&\qquad + \frac{1}{2}\text{ tr }(\Omega ^{-1}\Omega _0) - \frac{1}{2}\text{ tr }\Big ([A({\varvec{\beta }}_0)]^{-1} \Omega _0[A^{'}({\varvec{\beta }}_0)]^{-1} A^{'}({\varvec{\beta }})\Omega ^{-1}A({\varvec{\beta }})\Big ) \\&\quad = Q_a(\Omega )- Q_a(\Omega _0) - \frac{1}{2} \Big \{ A({\varvec{\beta }})[A({\varvec{\beta }}_0)]^{-1} {\varvec{\mu }}_0 - {\varvec{\mu }}\Big \}^{'}\Omega ^{-1} \Big \{ A({\varvec{\beta }})[A({\varvec{\beta }}_0)]^{-1} {\varvec{\mu }}_0 - {\varvec{\mu }}\Big \} \\&\qquad - \frac{1}{2}\text{ tr }\Big ( A^{'}({\varvec{\beta }}) \Omega ^{-1} A({\varvec{\beta }}) \left\{ [ A({\varvec{\beta }}_0)]^{-1}\Omega _0 [A^{'}({\varvec{\beta }}_0)]^{-1} - [ A({\varvec{\beta }})]^{-1}\Omega _0 [A^{'}({\varvec{\beta }})]^{-1}\right\} \Big ) \end{aligned}$$

Since \(\text{ cov }(\mathbf{z}_i)= [A({\varvec{\beta }}_0)]^{-1}\Omega _0 [A^{'}({\varvec{\beta }}_0)]^{-1}\) for the true model, we have

$$\begin{aligned} {[} A({\varvec{\beta }}_0)]^{-1}\Omega _0 [A^{'}({\varvec{\beta }}_0)]^{-1} - [ A({\varvec{\beta }})]^{-1}\Omega _0 [A^{'}({\varvec{\beta }})]^{-1} \end{aligned}$$

is semipositive definite. Therefore,

$$\begin{aligned} \text{ tr }\Big ( A^{'}({\varvec{\beta }}) \Omega ^{-1} A({\varvec{\beta }}) \left\{ [ A({\varvec{\beta }}_0)]^{-1}\Omega _0 [A^{'}({\varvec{\beta }}_0)]^{-1} - [ A({\varvec{\beta }})]^{-1}\Omega _0 [A^{'}({\varvec{\beta }})]^{-1}\right\} \Big ) \ge 0 \end{aligned}$$

by \(\tau _{\min }(B)\text{ tr }(D) \le \text{ tr }(BD) \le \tau _{\max }(B)\text{ tr }(D)\) for nonnegative matrices B and D.

Moreover, it follows by straightforward calculations that

$$\begin{aligned} A({\varvec{\beta }})[A({\varvec{\beta }}_0)]^{-1}{\varvec{\mu }}_0 - {\varvec{\mu }}=\left( \begin{array}{cc} {\varvec{\lambda }}_0+[I_T\otimes ({\varvec{\beta }}_0-{\varvec{\beta }})^{'}]{\varvec{\delta }}_0 - {\varvec{\lambda }}\\ {\varvec{\delta }}_0- {\varvec{\delta }}\end{array}\right) \ne 0 \end{aligned}$$

when \({\varvec{\beta }}\ne {\varvec{\beta }}_0\) and \({\varvec{\mu }}\ne {\varvec{\mu }}_0\). Then we have

$$\begin{aligned} \Big \{ A({\varvec{\beta }})[A({\varvec{\beta }}_0)]^{-1} {\varvec{\mu }}_0 - {\varvec{\mu }}\Big \}^{'}\Omega ^{-1} \Big \{ A({\varvec{\beta }})[A({\varvec{\beta }}_0)]^{-1} {\varvec{\mu }}_0 - {\varvec{\mu }}\Big \}>0 \end{aligned}$$

provided that \(\Omega \) is positive definite. Hence, \( Q({\varvec{\mu }}, {\varvec{\beta }}, \Omega ) - Q({\varvec{\mu }}_0, {\varvec{\beta }}_0, \Omega _0)<0\) for any \(({\varvec{\mu }}, {\varvec{\beta }}, \Omega )\) in the complement of an open neighborhood of \(({\varvec{\mu }}_0, {\varvec{\beta }}_0, \Omega _0)\).

The consistency of \({\hat{{\varvec{\mu }}}}\), \({\hat{{\varvec{\beta }}}}\) and \({\hat{\Omega }}\), which maximize \(\frac{1}{n} \ell ({\varvec{\mu }}, {\varvec{\beta }}, \Omega )\), then follows from the uniqueness of maximizer and (A.1) according to Theorem 3.4 of White (1994). \(\square \)

Proof of Theorem 2:

As \(\Omega =\Lambda \Lambda ^{'} + \Sigma _e\), we have

$$\begin{aligned} \Omega ^{-1}= \Sigma _e^{-1} - \Sigma _e^{-1}\Lambda (I_q + \Lambda ^{'}\Sigma _{e}^{-1}\Lambda )^{-1}\Lambda ^{'} \Sigma _{e}^{-1} \equiv \Sigma _e^{-1} - \Sigma _e^{-1}\Lambda B \Lambda ^{'} \Sigma _{e}^{-1} \end{aligned}$$
(A.2)

and \( B \Lambda ^{'} \Sigma _{e}^{-1} \Lambda = I_q - B. \) It follows that

$$\begin{aligned} \frac{1}{n} \sum \limits _{i=1}^n ({\mathcal {X}}_i^{*'}, \mathbf{0})\Omega ^{-1} \left( \begin{array}{c} {\mathcal {X}}_i^* \\ \mathbf{0} \end{array}\right)= & {} \frac{1}{n} \sum \limits _{i=1}^n {\mathcal {X}}_i^{*'} ( \Sigma _{\epsilon }^{-1} - \Sigma _{\epsilon }^{-1} D B D^{'} \Sigma _{\epsilon }^{-1}) {\mathcal {X}}_i^{*} \nonumber \\= & {} \frac{1}{n} \sum \limits _{i=1}^n \left( \begin{array}{ccc} {\mathcal {X}}_{i,1}^{*'}M{\mathcal {X}}_{i,1}^{*} &{} \cdots &{} {\mathcal {X}}_{i,1}^{*'}M{\mathcal {X}}_{i,p}^{*} \\ \vdots &{} \vdots &{} \vdots \\ {\mathcal {X}}_{i,p}^{*'}M{\mathcal {X}}_{i,1}^{*} &{} \cdots &{} {\mathcal {X}}_{i,p}^{*'}M{\mathcal {X}}_{i,p}^{*} \end{array}\right) , \end{aligned}$$
(A.3)

and for any \(k=1, \ldots , p\),

$$\begin{aligned} {\mathcal {X}}_{i,k}^{*}=(I_T\otimes \mathbf{l}_k^{'}) [\Gamma {\varvec{\alpha }}_i + \mathbf{u}_i - (\Gamma {\bar{{\varvec{\alpha }}}} + {\bar{\mathbf{u}}})], \end{aligned}$$
(A.4)

where \({\bar{{\varvec{\alpha }}}}= \frac{1}{n}\sum \limits _{i=1}^n {\varvec{\alpha }}_i\), and \({\bar{\mathbf{u}}}= \frac{1}{n}\sum \limits _{i=1}^n \mathbf{u}_i\).

Therefore, for \(j,k=1,\ldots ,p\),

$$\begin{aligned} \frac{1}{n}\sum \limits _{i=1}^n {\mathcal {X}}_{i,j}^{*} {\mathcal {X}}_{i,k}^{*'}= & {} (I_T\otimes \mathbf{l}_j^{'})\Big \{\frac{1}{n}\sum \limits _{i=1}^n(\Gamma {\varvec{\alpha }}_i + \mathbf{u}_i) (\Gamma {\varvec{\alpha }}_i + \mathbf{u}_i)^{'} \nonumber \\&\ \ - \frac{1}{n}\sum \limits _{i=1}^n(\Gamma {\varvec{\alpha }}_i + \mathbf{u}_i)(\Gamma {\bar{{\varvec{\alpha }}}} + {\bar{\mathbf{u}}})^{'} \nonumber \\&\ \ - \frac{1}{n}\sum \limits _{i=1}^n(\Gamma {\bar{{\varvec{\alpha }}}} + {\bar{\mathbf{u}}})(\Gamma {\varvec{\alpha }}_i + \mathbf{u}_i)^{'} + (\Gamma {\bar{{\varvec{\alpha }}}} + {\bar{\mathbf{u}}})(\Gamma {\bar{{\varvec{\alpha }}}} + {\bar{\mathbf{u}}})^{'} \Big \}(I_T\otimes \mathbf{l}_k) \nonumber \\= & {} (I_T\otimes \mathbf{l}_j^{'})(\Gamma \Gamma ^{'} + \Sigma _u)(I_T\otimes \mathbf{l}_k)+ o_P(1) \end{aligned}$$

by law of large numbers. Then, we have

$$\begin{aligned} \frac{1}{n} \sum \limits _{i=1}^n ({\mathcal {X}}_i^{*'}, \mathbf{0})\Omega ^{-1} \left( \begin{array}{c} {\mathcal {X}}_i^* \\ \mathbf{0} \end{array}\right) = \Psi + o_P(1). \end{aligned}$$
(A.5)

Furthermore,

$$\begin{aligned}&\frac{1}{n} \sum \limits _{i=1}^n \Vert ({\mathcal {X}}_i^{*'}, \mathbf{0})[{\hat{\Omega }}^{-1}- \Omega ^{-1}] \left( \begin{array}{c} {\mathcal {X}}_i^* \\ \mathbf{0} \end{array}\right) \Vert \nonumber \\&\quad \le \frac{1}{n} \sum \limits _{i=1}^n \Vert ({\mathcal {X}}_i^{*'}, \mathbf{0})\Vert \cdot \Vert \left( \begin{array}{c} {\mathcal {X}}_i^* \\ \mathbf{0} \end{array}\right) \Vert \cdot \Vert {\hat{\Omega }}^{-1}- \Omega ^{-1}\Vert \nonumber \\&\quad = \frac{1}{n} \sum \limits _{i=1}^n \text{ tr }({\mathcal {X}}_i^{*'}{\mathcal {X}}_i^*)\cdot \Vert {\hat{\Omega }}^{-1}- \Omega ^{-1}\Vert =o_P(1) \end{aligned}$$
(A.6)

using similar arguments as establishing (A.5), consistency of \({\hat{\Omega }}\) and boundedness of the parameters. Combing the results of (A.3), (A.5) and (A.6), we have

$$\begin{aligned} \frac{1}{n} \sum \limits _{i=1}^n ({\mathcal {X}}_i^{*'}, \mathbf{0}){\hat{\Omega }}^{-1} \left( \begin{array}{c} {\mathcal {X}}_i^* \\ \mathbf{0} \end{array}\right) = \Psi + o_P(1). \end{aligned}$$
(A.7)

Moreover, for any nonzero vector \(\mathbf{b}=(b_1, \ldots , b_p)^{'} \in R^p\), we have by straightforward calculations and (A.4)

$$\begin{aligned}&\frac{1}{\sqrt{n}} \sum \limits _{i=1}^n \mathbf{b}^{'}({\mathcal {X}}_i^{*'}, \mathbf{0})\Omega ^{-1} [\Lambda {\varvec{\alpha }}_i + \mathbf{e}_i- (\Lambda {\bar{{\varvec{\alpha }}}} + {\bar{\mathbf{e}}})] \nonumber \\&\quad = \frac{1}{\sqrt{n}} \sum \limits _{i=1}^n \sum \limits _{k=1}^p b_k ({\varvec{\xi }}_i - {\bar{{\varvec{\xi }}}})^{'} F^{'} H_k^{'} R F({\varvec{\xi }}_i -{\bar{{\varvec{\xi }}}}) \nonumber \\&\quad = \frac{1}{\sqrt{n}} \sum \limits _{i=1}^n \sum \limits _{k=1}^p b_k {\varvec{\xi }}_i^{'} F^{'} H_k^{'} R F{\varvec{\xi }}_i - {\bar{{\varvec{\xi }}}}^{'} \frac{2}{\sqrt{n}} \sum \limits _{i=1}^n \sum \limits _{k=1}^p b_k F^{'} H_k^{'} R F{\varvec{\xi }}_i \nonumber \\&\qquad +\, {\bar{{\varvec{\xi }}}}^{'}\sqrt{n} \sum \limits _{k=1}^p b_k F^{'} H_k^{'} R F {\bar{{\varvec{\xi }}}}^{'} . \end{aligned}$$
(A.8)

Since \(RFF^{'}=(I_T, \mathbf{0})\) and \(RFF^{'}R^{'}=M\) by ( A.2), it follows that

$$\begin{aligned} E\left[ \sum \limits _{k=1}^p b_k{\varvec{\xi }}_i^{'} F^{'} H_k^{'} R F{\varvec{\xi }}_i \right] = \sum \limits _{k=1}^p b_k \cdot \text{ tr }\Big (H_k^{'} R F F^{'}\Big )=0, \end{aligned}$$

and

$$\begin{aligned}&\text{ var }\left( \sum \limits _{k=1}^p b_k {\varvec{\xi }}_i^{'} F^{'} H_k^{'} R F{\varvec{\xi }}_i \right) \\&\quad = \sum \limits _{k=1}^p \sum \limits _{j=1}^p b_k b_j \cdot \text{ cov }({\varvec{\xi }}_i^{'} F^{'} H_k^{'} R F{\varvec{\xi }}_i, {\varvec{\xi }}_i^{'} F^{'} H_j^{'} R F{\varvec{\xi }}_i) \\&\quad = \sum \limits _{k=1}^p \sum \limits _{j=1}^p b_k b_j \Big \{\sum \limits _{l=1}^{T(p+1)+q} (E\xi _l^4 - 3) ( F^{'} H_k^{'} R F)_{ll} (F^{'} H_j^{'} R F)_{ll} \Big ) \\&\qquad +\, \text{ tr }(F^{'} H_k^{'} R F F^{'} H_j^{'} R F) + \text{ tr }(F^{'} H_k^{'} R F F^{'} R^{'} H_j F) \Big \}\\&\quad = \sum \limits _{k=1}^p \sum \limits _{j=1}^p b_k b_j \Big \{ \sum \limits _{l=1}^{T(p+1)+q} (E\xi _{1l}^4 - 3) [ F^{'} H_k^{'} R F]_{ll} [F^{'} H_j^{'} R F]_{ll} \Big ) \\&\qquad +\, \text{ tr }\Big ((I_T\otimes \mathbf{l}_k)M (I_T\otimes \mathbf{l}_j^{'}) (\Gamma \Gamma ^{'} + \Sigma _u)\Big ) \Big \}. \end{aligned}$$

Then we obtain by central limit theorem for iid. random variables that

$$\begin{aligned} \frac{1}{\sqrt{n}} \sum \limits _{i=1}^n \sum \limits _{k=1}^p b_k {\varvec{\xi }}_i^{'} F^{'} H_k^{'} R F{\varvec{\xi }}_i {\mathop {\rightarrow }\limits ^{d}} N\Big (\mathbf{0}, \mathbf{b}^{'} (\Delta + \Psi ) \mathbf{b}\Big ). \end{aligned}$$
(A.9)

Similarly, it can be shown that \(\frac{1}{\sqrt{n}} \sum \limits _{i=1}^n \sum \limits _{k=1}^p b_k F^{'} H_k^{'} R F{\varvec{\xi }}_i =O_p(1)\). Therefore, the second and third terms of (A.8) are both \(o_p(1)\) using \({\bar{{\varvec{\xi }}}}=O_P(n^{-1/2})\). This, together with \(\mathbf{z}_i^*= ({\mathcal {X}}_i^{*'}, \mathbf{0})^{'}{\varvec{\beta }}_0 + F ({\varvec{\xi }}_i - {\bar{{\varvec{\xi }}}})\), consistency of \({\hat{\Omega }}\) and (A.7), leads to the asymptotic distribution of Theorem 2. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Huang, W. Quasi-maximum likelihood estimation of short panel data models with time-varying individual effects. Metrika 85, 93–114 (2022). https://doi.org/10.1007/s00184-021-00825-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-021-00825-2

Keywords

Mathematics Subject Classification

Navigation