Skip to main content

Advertisement

Log in

Process Optimization and Studies on Mechanical Characteristics of AA2014/Al2O3 Nanocomposites Fabricated Through Ultrasonication Assisted Stir–Squeeze Casting

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The present study investigates the impact of novel ultrasonic-assisted squeeze casting parameters on the fabrication of AA2014/Al2O3 nanocomposites using the Taguchi Grey response surface methodology. The experiments were carried out using Taguchi's L16 orthogonal array, with five different controllable parameters of ultrasonic-assisted squeeze casting process such as ultrasonic power (1.5–2.25 kW), ultrasonic time (4–16 min.), pouring temperature (700–850 °C may result in premature solidification), squeeze pressure (50–200 MPa) and wt % of reinforcement (1-4). The process's performance measures included hardness, ultimate tensile strength, percentage of elongation and grain size. The microstructure of the nanocomposites was investigated using optical microscopy, high-resolution scanning electron microscopy and X-ray diffraction technique. The multiple responses were converted into a single Grey relational grade, which was then used in modelling and optimization using the response surface methodology. Analysis of variance and 3D surface plots were generated to investigate the most important parameters affecting the quality of AA2014/Al2O3 nanocomposites. The results showed that the optimum parameter settings were ultrasonic power of 2.2489 kW, ultrasonic time of 15.91min, pouring temperature of 700.67 °C, squeeze pressure of 41 MPa and wt % of reinforcement of 1.85. The results of TGRSM demonstrated that ultrasonic power had the strongest correlation with responses, with significant improvements in UTS and grain size. The confirmation experiment revealed an improvement of 0.201 in GRG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce the current findings cannot be publicly available at this time as the data also form a part of an ongoing study.

References

  1. U. Aybarc, H. Yavuz, D. Dispinar, M.O. Seydibeyoglu, The use of stirring methods for the production of SiC-reinforced aluminum matrix composite and validation via simulation studies. Int. J. Metalcast. 13, 190–200 (2019). https://doi.org/10.1007/s40962-018-0250-3

    Article  CAS  Google Scholar 

  2. S. Wetzel, Nano’s Frontier. Mod. Cast. 100(3), 27–30 (2010)

    Google Scholar 

  3. X. Jian, C. Xu, T. Meek, Q. Han, Effect of ultrasonic vibration on the solidification structure of A356 alloy. AFS Trans. 113, 131–138 (2005)

    CAS  Google Scholar 

  4. P.C. Lynch, R.C. Voigt, J.C. Furness Jr., D. Paulsen, The effects of non-contact acoustic stimulation on the solidification behavior and microstructure of aluminum alloy A356. AFS Trans. 118, 57–68 (2010)

    CAS  Google Scholar 

  5. X. Li, Y. Yang, D. Weiss, Ultrasonic cavitation based dispersion of nanoparticles in aluminum melts for solidification processing of bulk aluminum matrix nanocomposite: theoretical study, fabrication and characterization. AFS Trans. 115, 249–260 (2007)

    CAS  Google Scholar 

  6. G. Talla, D.K. Sahoo, S. Gangopadhyay, C.K. Biswas, Modeling and multi-objective optimization of powder mixed electric discharge machining process of aluminum/alumina metal matrix composite. Int. J. Eng. Sci. 18(3), 369–373 (2015). https://doi.org/10.1016/j.jestch.2015.01.007

    Article  Google Scholar 

  7. W. Khalifa, Y. Tsunekawa, M. Okumiya, Ultrasonic grain refining effects in A356 Al-Si cast alloy. AFS Trans. 118, 91–98 (2010)

    CAS  Google Scholar 

  8. K. Pasha Bam, Mohamed, Taguchi approach to influence of processing parameters onerosive wear behaviour of Al7034-T6 composites. T. Nonferr. Metal. Soc. 27(10), 2163–2171 (2017). https://doi.org/10.1016/S1003-6326(17)60242-5

    Article  Google Scholar 

  9. S. Thirumalai Kumaran, M. Uthayakumar, S. Aravindan, Analysis of dry sliding friction and wear behaviour of AA6351–SiC–B4C composites using grey relational analysis. Tribol. – Mater. Surf. Interfaces 8(4), 187–193 (2014). https://doi.org/10.1179/1751584X14Y.0000000075

    Article  CAS  Google Scholar 

  10. S. Banerjee, P. Sahoo, S. Poria, G. Sutradhar, Nano-indentation and corrosion characteristics of ultrasonic vibration assisted stir-cast AZ31–WC–Graphite nano-composites. Int. J. Metalcast (2020). https://doi.org/10.1007/s40962-020-00538-8

    Article  Google Scholar 

  11. G. Cao, H. Konishi, X. Li, Recent developments on ultrasonic cavitation based solidification processing of bulk Magnesium nanocomposites. Int. J. Metalcast 2, 57–65 (2008). https://doi.org/10.1007/BF03355422

    Article  CAS  Google Scholar 

  12. A. Khandelwal, K. Mani, N. Srivastava, R. Gupta, G.P. Chaudhari, Mechanical behavior of AZ31/Al2O3 magnesium alloy nanocomposites prepared using ultrasound assisted stir-casting. Compos. Part B-Eng. 123, 64–73 (2017). https://doi.org/10.1016/j.compositesb.2017.05.007

    Article  CAS  Google Scholar 

  13. M. Habibnejad-Korayem, R. Mahmudi, W.J. Poole, Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles. Mat. Sci. Eng.-A 519(1–2), 198–203 (2009). https://doi.org/10.1016/j.msea.2009.05.001

    Article  CAS  Google Scholar 

  14. H. Choi, W. Cho, X.C. Li, Semi-solid mixing for fabrication of A206/Al2O3 master nanocomposites. AFS Transactions 121, 159–164 (2013)

    CAS  Google Scholar 

  15. Y. Sun, H. Choi, X.C. Li, Composition optimization for A206/Al2O3 nanocomposite. AFS Transactions 121, 205–215 (2013)

    CAS  Google Scholar 

  16. S. Bin, S. Xing, N. Zhao, L. Li, Influence of technical parameters on strength and ductility of AlSi9Cu3 alloys in squeeze casting. T. Nonferr. Metal. Soc. 23(4), 977–982 (2013). https://doi.org/10.1016/S1003-6326(13)62555-8

    Article  CAS  Google Scholar 

  17. P. Loganathan, A. Gnanavelbabu, K. Rajkumar, Influence of ZrB2/hBN particles on the wear behaviour of AA7075 composites fabricated through stir followed by squeeze cast technique. P. I. Mech. Eng. J.-J. Eng. 235(1), 149–160 (2020). https://doi.org/10.1177/1350650120929501

    Article  CAS  Google Scholar 

  18. R. Ahmad, D.T. Gethin, R.W. Lewis, Design element concept of squeeze casting process. Appl. Math. Model 36(10), 4760–4788 (2012). https://doi.org/10.1016/j.apm.2011.12.012

    Article  Google Scholar 

  19. T. Lu, W. Chen, B. Li, M. Mao, Z. Li, Y. Liu, S. Scudino, Influence mechanisms of Zr and Fe particle additions on the microstructure and mechanical behavior of squeeze-cast 7075Al hybrid composites. J. Alloy Compd. 798, 587–596 (2019). https://doi.org/10.1016/j.jallcom.2019.05.301

    Article  CAS  Google Scholar 

  20. A. Gnanavelbabu, K. Rajkumar, Experimental characterization of dimensional and surface alternation of straight and angular cutting on self-lubricating composite: A wire EDM approach. Arab. J. Sci. Eng. 45, 5859–5872 (2020). https://doi.org/10.1007/s13369-020-04596-2

    Article  CAS  Google Scholar 

  21. D. Yuan, X. Yang, S. Wu, S. Lü, K. Hu, Development of high strength and toughness nano-SiCp/A356 composites with ultrasonic vibration and squeeze casting. J. Mater. Process Tech. 269, 1–9 (2019). https://doi.org/10.1016/j.jmatprotec.2019.01.021

    Article  CAS  Google Scholar 

  22. A. Hussain, A.I. Mourad, Conventional stir casting versus ultrasonic assisted stir casting process: Mechanical and physical characteristics of AMCs. J. Alloy Compd. 805, 502–508 (2019). https://doi.org/10.1016/j.jallcom.2019.07.076

    Article  CAS  Google Scholar 

  23. C. Allen, Q. Han, Grain refinement of pure aluminum using ultrasonics. Int. J. Metalcast 5, 69–70 (2011). https://doi.org/10.1007/BF03355511

    Article  Google Scholar 

  24. X. Liu, S. Jia, L. Nastac, Ultrasonic cavitation-assisted molten metal processing of cast A356-nanocomposites. Int. J. Metalcast 8, 51–58 (2014). https://doi.org/10.1007/BF03355591

    Article  CAS  Google Scholar 

  25. A. Gnanavelbabu, K.T. Sunu Surendran, P. Loganathan, E. Vinothkumar, Effect of ageing temperature on the corrosion behaviour of UHTC particulates reinforced magnesium composites fabricated through ultrasonic assisted squeeze castingprocess. J. Alloy Compd. 856, 158–173 (2020). https://doi.org/10.1016/j.jallcom.2020.158173

    Article  CAS  Google Scholar 

  26. D. Gao, Z. Li, Q. Han, Q. Zhai, Effect of ultrasonic power on microstructure and mechanical properties of AZ91 alloy. Mat. Sci. Eng.-A 502(1–2), 2–5 (2009). https://doi.org/10.1016/j.msea.2008.12.005

    Article  CAS  Google Scholar 

  27. S.H. Mousavi Anijdan, M. Sabzi, The effect of pouring temperature and surface angle of vortex casting on microstructural changes and mechanical properties of 7050Al-3 wt% SiC composite. Mat. Sci. Eng.-A 737, 230–235 (2018). https://doi.org/10.1016/j.msea.2018.09.057

    Article  CAS  Google Scholar 

  28. G. Chen, M. Yang, Y. Jin, H. Zhang, F. Han, Q. Chen, Z. Zhao, Ultrasonic assisted squeeze casting of a wrought aluminum alloy. J. Mater. Process Tech. 266, 19–25 (2019). https://doi.org/10.1016/j.jmatprotec.2018.10.032

    Article  CAS  Google Scholar 

  29. P. Vijian, V.P. Arunachalam, Optimization of squeeze casting process parameters using Taguchi analysis. Int. J. Adv. Manuf. Tech. 33(11–12), 1122–1127 (2007). https://doi.org/10.1007/s00170-006-0550-2

    Article  Google Scholar 

  30. H. Su, W. Gao, Z. Feng, Z. Lu, Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites. Mater. Design 36, 590–596 (2012). https://doi.org/10.1016/j.matdes.2011.11.064

    Article  CAS  Google Scholar 

  31. N. Srivastava, G.P. Chaudhari, M. Qian, Grain refinement of binary Al-Si, Al-Cu and Al-Ni alloys by ultrasonication. J. Mater. Process Tech. 249, 367–378 (2017). https://doi.org/10.1016/j.jmatprotec.2017.06.024

    Article  CAS  Google Scholar 

  32. M.H. Sarfraz, M. Jahanzaib, W. Ahmed, S. Hussain, Multi-response parametric optimization of squeeze casting process for fabricating Al 6061-SiC composite. Int. J. Adv. Manuf. Tech. 102(1–4), 759–773 (2019). https://doi.org/10.1007/s00170-018-03278-6

    Article  Google Scholar 

  33. R. Soundararajan, A. Ramesh, N. Mohanraj, N. Parthasarathi, An investigation of material removal rate and surface roughness of squeeze casted A413 alloy on WEDM by multi response optimization using RSM. J. Alloy Compd. 685, 533–545 (2016). https://doi.org/10.1016/j.jallcom.2016.05.292

    Article  CAS  Google Scholar 

  34. A. Maleki, B. Niroumand, A. Shafyei, Effects of squeeze casting parameters on density, macrostructure and hardness of LM13 alloy. Mat. Sci. Eng.-A 428(1–2), 135–140 (2006). https://doi.org/10.1016/j.msea.2006.04.099

    Article  CAS  Google Scholar 

  35. A. Jahangiri, S.P.H. Marashi, M. Mohammadaliha, V. Ashofte, The effect of pressure and pouring temperature on the porosity, microstructure, hardness and yield stress of AA2024 aluminum alloy during the squeeze casting process. J. Mater. Process Tech. 245, 1–6 (2017). https://doi.org/10.1016/j.jmatprotec.2017.02.005

    Article  CAS  Google Scholar 

  36. P. Madhukar, N. Selvaraj, C.S.P. Rao, G.B. Veeresh Kumar, Tribological behavior of ultrasonic assisted double stir casted novel nano-composite material (AA7150-hBN) using Taguchi technique. Compos. Part B-Eng. 175, 107–136 (2019). https://doi.org/10.1016/j.compositesb.2019.107136

    Article  CAS  Google Scholar 

  37. P. Senthil, K.S. Amirthagadeswaran, Optimization of squeeze casting parameters for non symmetrical AC2A aluminium alloy castings through taguchi method. J. Mech. Sci. Tech. 26(4), 1141–1147 (2012). https://doi.org/10.1007/s12206-012-0215-z

    Article  Google Scholar 

  38. R.J. Wang, W.F. Tan, D.W. Zhou, Effects of squeeze casting parameters on solidification time based on neural network. Int. J. Mater. Prod. Tec. 46(2/3), 124–140 (2013). https://doi.org/10.1504/IJMPT.2013.056302

    Article  Google Scholar 

  39. T. Varol, A. Canakci, S. Ozsahin, Prediction of effect of reinforcement content, flake size and flake time on the density and hardness of flake AA2024-SiC nanocomposites using neural networks. J. Alloy Compd. 739, 1005–1014 (2018). https://doi.org/10.1016/j.jallcom.2017.12.256

    Article  CAS  Google Scholar 

  40. G.C.M. Patel, P. Krishna, M.B. Parappagoudar, Squeeze casting process modeling by a conventional statistical regression analysis approach. Appl. Math. Model 40(15–16), 6869–6888 (2016). https://doi.org/10.1016/j.apm.2016.02.029

    Article  Google Scholar 

  41. G.C.M. Patel, A.K. Shettigar, P. Krishna, M.B. Parappagoudar, Back propagation genetic and recurrent neural network applications in modelling and analysis of squeeze casting process. Appl. Soft Comput. 59, 418–437 (2017). https://doi.org/10.1016/j.asoc.2017.06.018

    Article  Google Scholar 

  42. G.C.M. Patel, A.K. Shettigar, M.B. Parappagoudar, A systematic approach to model and optimize wear behaviour of castings produced by squeeze casting process. J. Manuf. Process 32, 199–212 (2018). https://doi.org/10.1016/j.jmapro.2018.02.004

    Article  Google Scholar 

  43. A. Gnanavelbabu, K.T. Sunu Surendran, S. Kumar, Influence of ultrasonication power on grain refinement, mechanical properties and wear behaviour of AZ91D/nano-Al2O3 composites. Mater. Express (2020). https://doi.org/10.1088/2053-1591/ab64d7

    Article  Google Scholar 

  44. A. Singh, N. Bala, Synthesis and comparative sliding wear behavior of stir cast Mg and Mg/Al2O3 metal matrix composites. Mater. Express (2019). https://doi.org/10.1088/2053-1591/ab10d3

    Article  Google Scholar 

  45. M.E. Moussa, M.A. Waly, M. Amin, Effect of high intensity ultrasonic treatment on microstructural modification and hardness of a nickel-aluminum bronze alloy. J. Alloy Compd. 741, 804–813 (2018). https://doi.org/10.1016/j.jallcom.2018.01.218

    Article  CAS  Google Scholar 

  46. Q. Gao, S. Wu, S. Lü, X. Xiong, R. Du, An. Ping, An Improvement of particles distribution of in-situ 5 vol% TiB2 particulates reinforced Al-4.5Cu alloy matrix composites with ultrasonic vibration treatment. J. Alloy Compd. 692, 1–9 (2017). https://doi.org/10.1016/j.jallcom.2016.09.013

    Article  CAS  Google Scholar 

  47. D. Sameer Kumar, K.N.S. Suman, C. Tara Sasanka, K. Ravindra, P. Poddar, S.B. Venkata Siva, Microstructure, mechanical response and fractography of AZ91E/Al2O3(p) nano composite fabricated by semi solid stir casting method. J. Magnes. Alloy 5(1), 48–55 (2017). https://doi.org/10.1016/j.jma.2016.11.006

    Article  CAS  Google Scholar 

  48. L. Hao, X. Yang, S. Lü, X. Fang, S. Wu, Influence of squeeze casting pressure and heat treatment on microstructure and mechanical properties of Mg94Ni2Y4 alloy with LPSO structure. Mat. Sci. Eng.-A 707, 280–286 (2017). https://doi.org/10.1016/j.msea.2017.09.060

    Article  CAS  Google Scholar 

  49. S. Zhu, T. Luo, Y. Li, Y. Yang, Characterization the role of squeezing pressure on microstructure, tensile properties and failure mode of a new Mg-6Zn-4Al-0.5Cu magnesium alloy. J. Alloy Compd. 718, 188–196 (2017). https://doi.org/10.1016/j.jallcom.2017.05.115

    Article  CAS  Google Scholar 

  50. H.S. Xue, Z.H. Xing, W. Zhang, G. Yang, F.S. Pan, Effects of ultrasonic treatment on microstructure and mechanical properties of Mg-6Zn-0.5Y-2Sn alloy. T. Nonferr. Metal Soc. 26(7), 1826–1834 (2016). https://doi.org/10.1016/S1003-6326(16)64263-2

    Article  CAS  Google Scholar 

  51. I. Tzanakis, G.S.B. Lebon, D.G. Eskin, K. Pericleous, Investigation of the factors influencing cavitation intensity during the ultrasonic treatment of molten aluminium. Mater. Design 90, 979–983 (2016). https://doi.org/10.1016/j.matdes.2015.11.010

    Article  CAS  Google Scholar 

  52. M.F. Qi, Y.L. Kang, B. Zhou, G.M. Zhu, H.H. Zhang, Y.D. Li, Effects of pouring temperature and cylinder temperature on microstructures and mechanical properties of rheomoulding AZ91D alloy. T. Nonferr. Metal Soc. 25(9), 2884–2892 (2015). https://doi.org/10.1016/S1003-6326(15)63914-0

    Article  CAS  Google Scholar 

  53. Y. Zhang, G. Wu, W. Liu, L. Zhang, S. Pang, Y. Wang, W. Ding, Effects of processing parameters and Ca content on microstructure and mechanical properties of squeeze casting AZ91-Ca alloys. Mat. Sci. Eng. A 595, 109–117 (2014). https://doi.org/10.1016/j.msea.2013.12.014

    Article  CAS  Google Scholar 

  54. T. Liu, Q. Wang, Y. Sui, Q. Wang, W. Ding, An investigation into aluminum-aluminum bimetal fabrication by squeeze casting. Mater. Design 68, 8–17 (2015). https://doi.org/10.1016/j.matdes.2014.11.051

    Article  CAS  Google Scholar 

  55. X.J. Wang, N.Z. Wang, L.Y. Wang, X.S. Hu, K. Wu, Y.Q. Wang, Y.D. Huang, Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing. Mater. Design 57, 638–645 (2014). https://doi.org/10.1016/j.matdes.2014.01.022

    Article  CAS  Google Scholar 

  56. Y.S. Yang, J.C. Wang, T. Wang, C.M. Liu, Z.M. Zhang, Effects of ultrasonic treatment on microstructures of AZ91 alloy. T. Nonferr. Metal Soc. 24(1), 76–81 (2014). https://doi.org/10.1016/S1003-6326(14)63030-2

    Article  CAS  Google Scholar 

  57. Z.H. Guo, H. Hou, Y.H. Zhao, S.W. Qu, Optimization of AZ80 magnesium alloy squeeze cast process parameters using morphological matrix. T. Nonferr. Metal Soc. 22(2), 411–418 (2012). https://doi.org/10.1016/S1003-6326(11)61192-8

    Article  CAS  Google Scholar 

  58. G.C. Manjunath Patel, P. Krishna, M.B. Parappagoudar, Modelling and multi-objective optimisation of squeeze casting process using regression analysis and genetic algorithm. Aust J Mech Eng 14(3), 182–198 (2016)

    Article  Google Scholar 

  59. J.G. Jung, J.M. Lee, Y.H. Cho, W.H. Yoon, Combined effects of ultrasonic melt treatment, Si addition and solution treatment on the microstructure and tensile properties of multicomponent Al-Si alloys. J. Alloy Compd. 693, 201–210 (2017). https://doi.org/10.1016/j.jallcom.2016.09.006

    Article  CAS  Google Scholar 

  60. R. Adalarasan, M. Santhanakumar, M. Rajmohan, Optimization of laser cutting parameters for Al6061/SiCp/Al2O3 composite using grey based response surface methodology (GRSM). Meas. 73, 596–606 (2015). https://doi.org/10.1016/j.measurement.2015.06.003

    Article  Google Scholar 

  61. U. Aybarc, O. Ertugrul, M.O. Seydibeyoglu, Effect of Al2O3 particle size on mechanical properties of ultrasonic-assisted stir-casted Al A356 matrix composites. Int. J. Metalcast (2020). https://doi.org/10.1007/s40962-020-00490-7

    Article  Google Scholar 

  62. H. Puga, S.D. Tohidi, V.H. Carneiro, J. Meireless, M. Prokic, Ceramic sonotrodes for light alloy melt treatment. Int. J. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00476-5

    Article  Google Scholar 

  63. J. Barbosa, H. Puga, Ultrasonic melt treatment of light alloys. Int. J. Metalcast. 13, 180–189 (2019). https://doi.org/10.1007/s40962-018-0248-x

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support by Science and Engineering Research Board (SERB), Government of India, through the grant number: EEQ/2017/000382.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gnanavelbabu.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnanavelbabu, A., Surendran, K.T.S. & Kumar, S. Process Optimization and Studies on Mechanical Characteristics of AA2014/Al2O3 Nanocomposites Fabricated Through Ultrasonication Assisted Stir–Squeeze Casting. Inter Metalcast 16, 759–782 (2022). https://doi.org/10.1007/s40962-021-00634-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00634-3

Keywords

Navigation