Skip to main content
Log in

CheSPI: chemical shift secondary structure population inference

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

NMR chemical shifts (CSs) are delicate reporters of local protein structure, and recent advances in random coil CS (RCCS) prediction and interpretation now offer the compelling prospect of inferring small populations of structure from small deviations from RCCSs. Here, we present CheSPI, a simple and efficient method that provides unbiased and sensitive aggregate measures of local structure and disorder. It is demonstrated that CheSPI can predict even very small amounts of residual structure and robustly delineate subtle differences into four structural classes for intrinsically disordered proteins. For structured regions and proteins, CheSPI provides predictions for up to eight structural classes, which coincide with the well-known DSSP classification. The program is freely available, and can either be invoked from URL www.protein-nmr.org as a web implementation, or run locally from command line as a python program. CheSPI generates comprehensive numeric and graphical output for intuitive annotation and visualization of protein structures. A number of examples are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

taken from a 2D-color-scale (see Fig. S3) based on the position in Ramachandran plot of pairs of ϕ and Ψ backbone torsion angles using trigonometric averages of the ensemble values (see Eq. 16, Methods). With this scale, backbone angles in the helical domain of the Ramachandran map appear in red as before, and extended β-sheet-like conformations have blue colors. Furthermore, left-twisted β-strands as well as fragments with PPII structure appear with cyan colors, whereas conformations with positive ϕ have yellow and green colors, and finally, other conformation referred to elsewhere as “forbidden” in Ramachandran space are shown in black. Transparency is added to the bars using the above local angular order parameters as the “alpha value”. See also Figure S1

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request. Python code for CheSPI is available for download at GitHub: https://github.com/protein-nmr.

References

  • Adzhubei AA, Sternberg MJ, Makarov AA (2013) Polyproline-II helix in proteins: structure and function. J Mol Biol 425:2100–2132

    Article  Google Scholar 

  • Banci L et al (2002) The solution structure of reduced dimeric copper zinc superoxide dismutase. Eur J Biochem 269:1905–1915

    Article  Google Scholar 

  • Barghorn S, Davies P, Mandelkow E (2004) Tau paired helical filaments from Alzheimer’s disease brain and assembled in vitro are based on beta-structure in the core domain. Biochemistry 43:1694–1703

    Article  Google Scholar 

  • Berjanskii MV, Wishart DS (2007) The RCI server: rapid and accurate calculation of protein flexibility using chemical shifts. Nucleic Acids Res 35:W531–W537

    Article  Google Scholar 

  • Bernadó P et al (2005) A structural model for unfolded proteins from residual dipolar couplings and small-angle x-ray scattering. Proc Natl Acad Sci USA 102:17002–17007

    Article  ADS  Google Scholar 

  • Berriman J et al (2003) Tau filaments from human brain and from in vitro assembly of recombinant protein show cross-beta structure. Proc Natl Acad Sci USA 100:9034–9038

    Article  ADS  Google Scholar 

  • Bradley W, Robert P (2013) Multivariate analysis in metabolomics. Curr Metabol 1:92–107

    Google Scholar 

  • Braun D, Wider G, Wuethrich K (1994) Sequence-corrected 15N “random coil” chemical shifts. J Am Chem Soc 116:8466–8469

    Article  Google Scholar 

  • Brutscher B et al (2015) NMR methods for the study of instrinsically disordered proteins structure, dynamics, and interactions: general overview and practical guidelines. Adv Exp Med Biol 870:49–122

    Article  Google Scholar 

  • Bunney TD et al (2006) Structural and mechanistic insights into ras association domains of phospholipase C epsilon. Mol Cell 21:495–507

    Article  Google Scholar 

  • Bylesjö M et al (2006) OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J Chemom 20:341–351

    Article  Google Scholar 

  • Camilloni C, De Simone A, Vranken WF, Vendruscolo M (2012) Determination of secondary structure populations in disordered states of proteins using nuclear magnetic resonance chemical shifts. Biochemistry 51:2224–2231

    Article  Google Scholar 

  • Camilloni C, Cavalli A, Vendruscolo M (2013) Replica-averaged metadynamics. J Chem Theory Comput 9:5610–5617

    Article  Google Scholar 

  • Cavalli A, Salvatella X, Dobson CM, Vendruscolo M (2007) Protein structure determination from NMR chemical shifts. Proc Natl Acad Sci 104:9615

    Article  ADS  Google Scholar 

  • Cleveland DW, Hwo SY, Kirschner MW (1977) Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol 116:227–247

    Article  Google Scholar 

  • Daebel V et al (2012) β-Sheet core of Tau paired helical filaments revealed by solid-state NMR. J Am Chem Soc 134:13982–13989

    Article  Google Scholar 

  • Dass R, Mulder FAA, Nielsen JT (2020) ODiNPred: comprehensive prediction of protein order and disorder. Sci Rep 10:14780

    Article  ADS  Google Scholar 

  • Davidson WS, Jonas A, Clayton DF, George JM (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273:9443–9449

    Article  Google Scholar 

  • De Simone A et al (2009) Accurate random coil chemical shifts from an analysis of loop regions in native states of proteins. J Am Chem Soc 131:16332–16333

    Article  Google Scholar 

  • Eghbalnia HR et al (2005) Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements. J Biomol NMR 32:71–81

    Article  Google Scholar 

  • Eliezer D et al (2005) Residual structure in the repeat domain of tau: echoes of microtubule binding and paired helical filament formation. Biochemistry 44:1026–1036

    Article  Google Scholar 

  • Felli IC, Pierattelli R (2012) Recent progress in NMR spectroscopy: toward the study of intrinsically disordered proteins of increasing size and complexity. IUBMB Life 64:473–481

    Article  Google Scholar 

  • Fitzpatrick AWP et al (2017) Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547:185–190

    Article  ADS  Google Scholar 

  • Graham LA, Davies PL (2005) Glycine-rich antifreeze proteins from snow fleas. Science 310:461

    Article  Google Scholar 

  • Hafsa NE, Arndt D, Wishart DS (2015) CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts. Nucleic Acids Res 43:W370–W377

    Article  Google Scholar 

  • Hyberts SG, Goldberg MS, Havel TF, Wagner G (1992) The solution structure of eglin c based on measurements of many NOEs and coupling constants and its comparison with X-ray structures. Protein Sci 1:736–751

    Article  Google Scholar 

  • Jensen PH et al (1998) Binding of alpha-synuclein to brain vesicles is abolished by familial Parkinson’s disease mutation. J Biol Chem 273:26292–26294

    Article  Google Scholar 

  • Jensen MR, Salmon L, Nodet G, Blackledge M (2010) Defining conformational ensembles of intrinsically disordered and partially folded proteins directly from chemical shifts. J Am Chem Soc 132:1270–1272

    Article  Google Scholar 

  • Jha AK, Colubri A, Freed KF, Sosnick TR (2005) Statistical coil model of the unfolded state: resolving the reconciliation problem. Proc Natl Acad Sci USA 102:13099

    Article  ADS  Google Scholar 

  • Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  Google Scholar 

  • Källberg M et al (2012) Template-based protein structure modeling using the RaptorX web server. Nat Protoc 7:1511–1522

    Article  Google Scholar 

  • Kjaergaard M, Poulsen FM (2012) Disordered proteins studied by chemical shifts. Prog Nucl Magn Reson Spectrosc 60:42–51

    Article  Google Scholar 

  • Kjaergaard M, Brander S, Poulsen FM (2011) Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH. J Biomol NMR 49:139–149

    Article  Google Scholar 

  • Kukic P et al (2019) The free energy landscape of the oncogene protein E7 of human papillomavirus type 16 reveals a complex interplay between ordered and disordered regions. Sci Rep 9:5822. https://doi.org/10.1038/s41598-019-41925-4

    Article  ADS  Google Scholar 

  • Labudde D, Leitner D, Krüger M, Oschkinat H (2003) Prediction algorithm for amino acid types with their secondary structure in proteins (PLATON) using chemical shifts. J Biomol NMR 25:41–53

    Article  Google Scholar 

  • Lee JH et al (2015) Heterogeneous binding of the SH3 client protein to the DnaK molecular chaperone. Proc Natl Acad Sci USA 112:E4206-4215

    Article  Google Scholar 

  • Makowska J et al (2006) Polyproline II conformation is one of many local conformational states and is not an overall conformation of unfolded peptides and proteins. Proc Natl Acad Sci USA 103:1744

    Article  ADS  Google Scholar 

  • Marsh JA, Forman-Kay JD (2009) Structure and disorder in an unfolded state under nondenaturing conditions from ensemble models consistent with a large number of experimental restraints. J Mol Biol 391:359–374

    Article  Google Scholar 

  • Marsh JA, Forman-Kay JD (2012) Ensemble modeling of protein disordered states: experimental restraint contributions and validation. Proteins 80:556–572

    Article  Google Scholar 

  • Marsh JA, Singh VK, Jia Z, Forman-Kay JD (2006) Sensitivity of secondary structure propensities to sequence differences between alpha- and gamma-synuclein: implications for fibrillation. Protein Sci 15:2795–2804

    Article  Google Scholar 

  • Mielke SP, Krishnan VV (2009) Characterization of protein secondary structure from NMR chemical shifts. Prog Nucl Magn Reson Spectrosc 54:141–165

    Article  Google Scholar 

  • Milani P, Gagliardi S, Cova E, Cereda C (2011) SOD1 Transcriptional and posttranscriptional regulation and its potential implications in ALS. Neurol Res Int 2011:458427

    Article  Google Scholar 

  • Mukrasch MD et al (2007) Highly populated turn conformations in natively unfolded tau protein identified from residual dipolar couplings and molecular simulation. J Am Chem Soc 129:5235–5243

    Article  Google Scholar 

  • Neal S, Nip AM, Zhang HY, Wishart DS (2003) Rapid and accurate calculation of protein H-1, C-13 and N-15 chemical shifts. J Biomol NMR 26:215–240

    Article  Google Scholar 

  • Nielsen JT, Mulder FAA (2016) There is diversity in disorder—“In all chaos there is a cosmos, in all disorder a secret order.” Front Mol Biosci. https://doi.org/10.3389/fmolb.2016.00004

    Article  Google Scholar 

  • Nielsen JT, Mulder FAA (2018) POTENCI: prediction of temperature, neighbor and pH-corrected chemical shifts for intrinsically disordered proteins. J Biomol NMR 70:141–165

    Article  Google Scholar 

  • Nielsen JT, Mulder FAA (2019) Quality and bias of protein disorder predictors. Sci Rep 9:5137

    Article  ADS  Google Scholar 

  • Nielsen JT, Mulder FAA (2020) Quantitative protein disorder assessment Using NMR chemical shifts. In: Kragelund BB, Skriver K (eds) Intrinsically Disordered proteins: methods and protocols. Springer, New York, pp 303–317

    Chapter  Google Scholar 

  • Nielsen JT, Eghbalnia HR, Nielsen NC (2012) Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field. Prog Nucl Magn Reson Spectrosc 60:1–28

    Article  Google Scholar 

  • Ozenne V et al (2012) Mapping the potential energy landscape of intrinsically disordered proteins at amino acid resolution. J Am Chem Soc 134:15138–15148

    Article  Google Scholar 

  • Pal L, Chakrabarti P, Basu G (2003) Sequence and structure patterns in proteins from an analysis of the shortest helices: implications for helix nucleation. J Mol Biol 326:273–291

    Article  Google Scholar 

  • Pentelute BL et al (2008) X-ray structure of snow flea antifreeze protein determined by racemic crystallization of synthetic protein enantiomers. J Am Chem Soc 130:9695–9701

    Article  Google Scholar 

  • Rakhit R, Chakrabartty A (2006) Structure, folding, and misfolding of Cu, Zn superoxide dismutase in amyotrophic lateral sclerosis. Biochimica et Biophysica Acta Mol Basis Dis 1762:1025–1037

    Article  Google Scholar 

  • Rao JN, Dua V, Ulmer TS (2008) Characterization of alpha-synuclein interactions with selected aggregation-inhibiting small molecules. Biochemistry 47:4651–4656

    Article  Google Scholar 

  • Rao JN, Kim YE, Park LS, Ulmer TS (2009) Effect of pseudorepeat rearrangement on alpha-synuclein misfolding, vesicle binding, and micelle binding. J Mol Biol 390:516–529

    Article  Google Scholar 

  • Rao JN et al (2010) A Combinatorial NMR and EPR approach for evaluating the structural ensemble of partially folded proteins. J Am Chem Soc 132:8657–8668

    Article  Google Scholar 

  • Richardson JS, Richardson DC (2002) Natural beta-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc Natl Acad Sci USA 99:2754–2759

    Article  ADS  Google Scholar 

  • Robberecht W et al (1994) Cu/Zn superoxide dismutase activity in familial and sporadic amyotrophic lateral sclerosis. J Neurochem 62:384–387

    Article  Google Scholar 

  • Robustelli P, Stafford KA, Palmer AG (2012) Interpreting protein structural Dynamics from NMR chemical shifts. J Am Chem Soc 134:6365–6374

    Article  Google Scholar 

  • Rosen DR et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    Article  ADS  Google Scholar 

  • Schwarzinger S et al (2001) Sequence-dependent correction of random coil NMR chemical shifts. J Am Chem Soc 123:2970–2978

    Article  Google Scholar 

  • Shapovalov M, Vucetic S, Dunbrack RL Jr (2019) A new clustering and nomenclature for beta turns derived from high-resolution protein structures. PLoS Comput Biol 15:e1006844–e1006844

    Article  ADS  Google Scholar 

  • Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56:227–241

    Article  Google Scholar 

  • Shen Y, Bax A (2015) Protein structural information derived from nmr chemical shift with the neural network program TALOS-N. Methods Mol Biol 1260:17–32

  • Shi Z, Chen K, Liu Z, Kallenbach NR (2006) Conformation of the backbone in unfolded proteins. Chem Rev 106:1877–1897

    Article  Google Scholar 

  • Singleton AB et al (2003) [alpha]-synuclein locus triplication causes Parkinson’s disease. Science 302:841

    Article  Google Scholar 

  • Sirangelo I, Iannuzzi C (2017) The role of metal binding in the amyotrophic lateral sclerosis-related aggregation of copper-zinc superoxide dismutase. Molecules 22:1429

    Article  Google Scholar 

  • Sormanni P et al (2017) Simultaneous quantification of protein order and disorder. Nat Chem Biol 13:339–342

    Article  Google Scholar 

  • Stefanis L (2012) α-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009399–a009399

    Article  Google Scholar 

  • Sterckx YGJ et al (2014) Small-angle X-Ray scattering- and nuclear magnetic resonance-derived conformational ensemble of the highly flexible antitoxin PaaA2. Structure 22:854–865

    Article  Google Scholar 

  • Tamiola K, Mulder FAA (2012) Using NMR chemical shifts to calculate the propensity for structural order and disorder in proteins. Biochem Soc Trans 40:1014–1020

    Article  Google Scholar 

  • Tamiola K, Acar B, Mulder FAA (2010) Sequence-specific random coil chemical shifts of intrinsically disordered proteins. J Am Chem Soc 132:18000–18003

    Article  Google Scholar 

  • Teilum K et al (2009) Transient structural distortion of metal-free Cu/Zn superoxide dismutase triggers aberrant oligomerization. Proc Natl Acad Sci USA 106:18273–18278

    Article  ADS  Google Scholar 

  • Tofaris GK, Spillantini MG (2005) Alpha-synuclein dysfunction in Lewy body diseases. Mov Disord 20(Suppl 12):S37-44

    Article  Google Scholar 

  • Tompa P (2009) Structure and function of intrinsically disordered proteins. Chapman and Hall/CRC, London

    Book  Google Scholar 

  • Trygg J, Wold S (2002) Orthogonal projections to latent structures (O-PLS). J Chemom 16:119–128

    Article  Google Scholar 

  • Uversky VN, Longhi S (2010) Instrumental analysis of intrinsically disordered proteins: assessing structure and conformation. Wiley, Hoboken

    Book  Google Scholar 

  • Varadi M et al (2014) pE-DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins. Nucleic Acids Res 42:D326–D335

    Article  Google Scholar 

  • Varadi M, Vranken W, Guharoy M, Tompa P (2015) Computational approaches for inferring the functions of intrinsically disordered proteins. Front Mol Biosci. https://doi.org/10.3389/fmolb.2015.00045

    Article  Google Scholar 

  • von Bergen M et al (2000) Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming beta structure. Proc Natl Acad Sci USA 97:5129–5134

    Article  ADS  Google Scholar 

  • Wang C-C, Chen J-H, Lai W-C, Chuang W-J (2007) 2DCSi: identification of protein secondary structure and redox state using 2D cluster analysis of NMR chemical shifts. J Biomol NMR 38:57–63

    Article  Google Scholar 

  • Wang Z, Zhao F, Peng J, Xu J (2011) Protein 8-class secondary structure prediction using conditional neural fields. Proteomics 11:3786–3792

    Article  Google Scholar 

  • Wishart DS, Case DA (2001) Use of chemical shifts in macromolecular structure determination. Resonance Biologica Macromol C 338:3–34

    Google Scholar 

  • Wishart DS, Sykes BD (1994a) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4:171–180

    Article  Google Scholar 

  • Wishart DS, Sykes BD (1994b) Chemical-shifts as a tool for structure determination. Methods Enzymol 239:363–392

    Article  Google Scholar 

  • Wishart DS, Sykes BD, Richards FM (1992) The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31:1647–1651

    Article  Google Scholar 

  • Wishart DS et al (1995) 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR 5:67–81

    Article  Google Scholar 

  • Worley B, Powers R (2016) PCA as a practical indicator of OPLS-DA model reliability. Curr Metabol 4:97–103

    Article  Google Scholar 

  • Wu Z, Li D, Meng J, Wang H (2010) Introduction to SIMCAP and its application. In: Esposito Vinzi V, Chin WW, Henseler J, Wang H (eds) Handbook of partial least squares concepts methods and applications. Springer, Berlin, pp 757–774

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jakob Toudahl Nielsen or Frans A. A. Mulder.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1891 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nielsen, J.T., Mulder, F.A.A. CheSPI: chemical shift secondary structure population inference. J Biomol NMR 75, 273–291 (2021). https://doi.org/10.1007/s10858-021-00374-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-021-00374-w

Keywords

Navigation