Skip to main content

Advertisement

Log in

Adaptive Underlay/Interweave Transmission Protocol for Cognitive Radio Networks

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

In this paper, we suggest a new transmission technique for cognitive radio networks. The proposed adaptive underlay/interweave transmission technique is evaluated in the presence and absence of primary interference. The proposed adaptive underlay/interweave transmission technique offers 1–3 dB gains with respect to conventional cognitive radio networks (CRN) using either underlay or interweave. The proposed protocol is extended to CRN with energy harvesting using radio frequency (RF) signals. Our results are valid for any position of primary and secondary transmitter and receiver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Atapattu S, Tellambura C, Jiang H (2009) Relay based cooperative spectrum sensing in cognitive radio networks. GLOBECOM

  • Atapattu S, Tellambura C, Jiang H (2011) Energy detection based cooperative spectrum sensing in cognitive radio networks. IEEE Trans Wirel Commun 4(10):1232–1241

    Article  Google Scholar 

  • Babaei M, Aygölü Ü, Basar E (2018) BER analysis of dual-hop relaying with energy harvesting in Nakagami-m Fading channel. IEEE Trans Wirel Commun 2018:1–1

    Google Scholar 

  • Barua B, Ngo HQ, Shin H (2008) On the SEP of cooperative diversity with opportunistic relaying. IEEE Commun Lett 12(10):727–729

    Article  Google Scholar 

  • Bhargavi D, Murthy CR (2010) Performance comparison of energy, matched-filter and cyclostationarity-based spectrum sensing. SPAWC

  • Digham FF, Alouini MS, Simon MK (2007) On the energy detection of unknown signals over fading channels. IEEE Trans Commun 55(1):21–24

    Article  Google Scholar 

  • Fan R, Atapattu S, Chen W, Zhang Y, Evans J (2018) Throughput maximization for multi-hop decode-and-forward relay network with wireless energy harvesting. IEEE Access 6:24582–24595

    Article  Google Scholar 

  • Ghasemi A, Sousa E (2005) Collaborative spectrum sensing for opportunistic access in fading environments. In: Proceedings of the IEEE DySPAN, pp 131–136

  • Gingras B, Pourranjbar A, Kaddoum G (2020) Collaborative Spectrum Sensing in Tactical Wireless Networks. In: 2020 IEEE international conference on communications (ICC), ICC 2020

  • Golvaei M, Fakharzadeh M (2020) A fast soft decision algorithm for cooperative spectrum sensing. IEEE Trans Circuits Syst II: Express Briefs. Early Access Article

  • Gradshteyn IS, Ryzhik IM (1994) Table of integrals, series and products, 5th edn. Academic, San Diego

    MATH  Google Scholar 

  • Hasna MO, Alouini MS (2003) End-to-end performance of transmission systems with relays over Rayleigh fading channels. IEEE Trans Wirel Commun 2:1126–1131

    Article  Google Scholar 

  • Hasna MO, Alouini MS (2004) A performance study of dual-hop transmissions with fixed gain relays. IEEE Trans Wirel Commun 3(6):1963–1968

    Article  Google Scholar 

  • Huang Y, Wang J, Ping Z, Qihui W (2018) Performance analysis of energy harvesting multi-antenna relay networks with different antenna selection schemes. IEEE Access 6:5654–5665

    Article  Google Scholar 

  • Jasbi F, So DKC (2015) Hybrid overlay/underlay cognitive radio network with MC-CDMA. IEEE Trans Veh Technol 65(4):2038–2047

    Article  Google Scholar 

  • Kalluri T, Peer M, Bohara VA, da Costa Daniel B, Dias Ugo S (2018) Cooperative spectrum sharing-based relaying protocols with wireless energy harvesting cognitive user. IET Commun 12(7):838–847

  • Lei H, Xu M, Ansari IS, Pan G, Qaraqe KA, Alouini M-S (2018) On secure underlay MIMO cognitive radio networks with energy harvesting and transmit antenna selection. IEEE Trans Green Commun Netw 1(2):2473–2400

    Google Scholar 

  • Li Z, Yu F, Huang M (2009) A cooperative spectrum sensing consensus scheme in cognitive radio. In: Proceedings of the INFOCOM, pp 2546–2550

  • Meng X, Inaltekin H, Krongold B (2020) End-to-end deep learning-based compressive spectrum sensing in cognitive radio networks. In: 2020 IEEE international conference on communications (ICC), ICC 2020

  • Mosleh S, Tadaion AA, Derakhian AM, Aref MR (2012) Performance comparison of the Neyman–Pearson fusion rule with counting rules for spectrum sensing in cognitive radio. Iran J Sci Technol Trans Electr Eng 36(1):1–17

    Google Scholar 

  • Nhat TT, Duy TT, Bao VNQ (2018) Performance evaluation of cooperative relay networks with one full-energy relay and one energy harvesting relay. In: 2018 2nd international conference on recent advances in signal processing, telecommunications and computing (SigTelCom), pp 7–12

  • Patel DK, Soni B, López-Benítez M (2020) Improved likelihood ratio statistic-based cooperative spectrum sensing for cognitive radio. IET Commun 14(11):1675–1686

    Article  Google Scholar 

  • Preetham CS, Siva GPM (2016) Hybrid overlay/underlay transmission scheme with optimal resource allocation for primary user throughput maximization in cooperative cognitive radio networks. Wirel Pers Commun 91(3):1123–1136

    Article  Google Scholar 

  • Proakis J (2007) Digital communications, 5th edn. McGraw-Hill, New York

    MATH  Google Scholar 

  • Sharifi AA, Mofarreh-Bonab M (2018) Performance improvement of cooperative spectrum sensing in the presence of primary user emulation attack. Iran J Sci Technol Trans Electr Eng 42:493–499

    Article  Google Scholar 

  • Sharma Shree Krishna. (2014) Interweave/underlay cognitive radio techniques and applications in satellite communication systems. PhD diss., University of Luxembourg, Luxembourg, 2014, and the relate references here in this thesis

  • Unnikrishnan J, Veeravalli VV (2008) Cooperative sensing for primary detection in cognitive radio. IEEE J Sel Top Signal Process 2:18–27

    Article  Google Scholar 

  • Visotsky E, Kuffner S, Peterson R (2005) On collaborative detection of TV transmissions in support of dynamic spectrum sharing. In: Proceedings of IEEE DySPAN, pp 338–245

  • Wang Y, Ren P, Feifei G, Zhou S (2014) A hybrid underlay/overlay transmission mode for cognitive radio networks with statistical quality-of-service provisioning. IEEE Trans Wirel Commun 13(3):1482–1498

    Article  Google Scholar 

  • Wan R, Wu M, Hu L, Wang H (2020) Energy-efficient cooperative spectrum sensing scheme based on spatial correlation for cognitive. Internet of Things, IEEE Access, Early Access Article

  • Wu Q, Zhang R (2019) Beamforming optimization for intelligent reflecting surface with discrete phase shifts. ICASSP 2019

  • Xie D, Lai X, Lei X, Fan L (2018) Cognitive multiuser energy harvesting decode-and-forward relaying system with direct links. IEEE Access 6:5596–5606

    Article  Google Scholar 

  • Yan Z, Chen S, Zhang X, Liu H-L (2018) Outage performance analysis of wireless energy harvesting relay-assisted random underlay cognitive networks. IEEE Internet Things J 2018:1–1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassan Alnwaimi.

Appendices

Appendix 1: PDF of SINR for Underlay CRN Without Energy Harvesting

Let \(\Gamma _{S_TS_R}^{underlay}\) be the SINR at \(S_R\) defined in (9). The cumulative distribution function (CDF) of \(\Gamma _{S_TS_R}^{underlay}\) can be evaluated as:

$$\begin{aligned}&P(\Gamma _{S_TS_R}^{underlay}<\gamma )\nonumber \\&\quad =P\left( \Gamma _{S_TS_R}^{underlay}<\gamma | \frac{T}{|g_{S_TP_R}|^2}<E_{\max }\right) \nonumber \\&\qquad P\left( \frac{T}{|g_{S_TP_R}|^2}<E_{\max }\right) \nonumber \\&\qquad +P\left( \Gamma _{S_TS_R}^{underlay}<\gamma |\frac{T}{|g_{S_TP_R}|^2}>E_{\max }\right) \nonumber \\&\qquad P\left( \frac{T}{|g_{S_TP_R}|^2}>E_{\max }\right). \end{aligned}$$
(32)

We have

$$\begin{aligned}&P\left( \frac{T}{|g_{S_TP_R}|^2}<E_{\max }\right) \nonumber \\&\quad =1-P\left( \frac{T}{|g_{S_TP_R}|^2}>E_{\max }\right) =e^{-\frac{T}{E_{\max }\lambda _{S_TP_R}}} \end{aligned}$$
(33)

where \(\lambda _{S_TP_R}=E(|g_{S_TP_R}|^2)\) and E(.) is the expectation operator.

When \(\frac{T}{|g_{S_TP_R}|^2}>E_{\max }\), \(E_{S_T}=E_{\max }\) and we have

$$\begin{aligned}&P\left( \Gamma _{S_TS_R}^{underlay}<\gamma |\frac{T}{|g_{S_TP_R}|^2}>E_{\max }\right) \nonumber \\&\quad =P\left( \frac{E_{\max }|g_{S_TS_R}|^2}{N_0+E_{P_T}|g_{P_TS_R}|^2}<\gamma \right) \nonumber \\&\quad =\int _0^{+\infty }P(E_{\max }|g_{S_TS_R}|^2<\gamma (N_0+E_{P_T}y))\frac{e^{-\frac{y}{\lambda _{P_TS_R}}}}{\lambda _{P_TS_R}}dy \nonumber \\&\quad =\int _0^{+\infty }\left[ 1-e^{-\frac{\gamma (N_0+E_{P_T}y)}{E_{\max }\lambda _{S_TS_R}}}\right] \frac{e^{-\frac{y}{\lambda _{P_TS_R}}}}{\lambda _{P_TS_R}}dy\nonumber \\&\quad =1-\frac{E_{\max }\lambda _{S_TS_R}}{E_{\max }\lambda _{S_TS_R}+\gamma E_{P_T}\lambda _{P_TS_R}} \end{aligned}$$
(34)

where \(\lambda _{S_TS_R}=E(|g_{S_TS_R}|^2).\)

When \(\frac{T}{|g_{S_TP_R}|^2}<E_{\max }\), \(E_{S_T}=\frac{T}{|g_{S_TP_R}|^2}\) and we have

$$\begin{aligned}&P\left( \Gamma _{S_TS_R}^{underlay}<\gamma |\frac{T}{|g_{S_TP_R}|^2}<E_{\max }\right) \nonumber \\&\quad =P\left( \frac{T|g_{S_TS_R}|^2}{|g_{S_TP_R}|^2 (N_0+E_{P_T}|g_{P_TS_R}|^2)}<\gamma |\frac{T}{|g_{S_TP_R}|^2}<E_{\max }\right). \end{aligned}$$
(35)

We deduce

$$\begin{aligned}&P\left( \Gamma _{S_TS_R}^{underlay}<\gamma |\frac{T}{|g_{S_TP_R}|^2}<E_{\max }\right) \nonumber \\&\quad =\int _{\frac{T}{E_{\max }}}^{+\infty }\int _0^{+\infty } P\left( |g_{S_TS_R}|^2<\frac{\gamma x (N_0+E_{P_T}y)}{T}\right) \nonumber \\&\qquad \frac{e^{-\frac{y}{\lambda _{P_TS_R}}}e^{-\frac{x}{\lambda _{S_TP_R}}}}{\lambda _{S_TP_R}\lambda _{P_TS_R}}dxdy,\nonumber \\&\quad =\int _{\frac{T}{E_{\max }}}^{+\infty }\int _0^{+\infty }\left[ 1-e^{-\frac{\gamma x (N_0+E_{P_T}y)}{T\lambda _{S_TS_R}}}\right] \nonumber \\&\qquad \frac{e^{-\frac{y}{\lambda _{P_TS_R}}}e^{-\frac{x}{\lambda _{S_TP_R}}}}{\lambda _{S_TP_R}\lambda _{P_TS_R}}dxdy. \end{aligned}$$
(36)

After some calculation, we obtain

$$\begin{aligned}&P\left( \Gamma _{S_TS_R}^{underlay}<\gamma |\frac{T}{|g_{S_TP_R}|^2}<E_{\max }\right) \nonumber \\&\quad =1-\frac{e^{\frac{N_0}{E_{P_T}\lambda _{P_TS_R}}}}{E_{P_T}\lambda _{P_TS_R}} \times \frac{T\lambda _{S_TS_R}}{\gamma \lambda _{S_TP_R}} e^{\frac{\lambda _{S_TS_R}T}{\gamma E_{P_T}}\lambda _{P_TS_R}\lambda _{S_TP_R}}\nonumber \\&\qquad \times e^{\frac{T}{E_{\max }\lambda _{S_TS_R}}}E_i \left[ \left( N_0+\frac{\lambda _{S_TS_R}T}{\lambda _{S_TP_R}\gamma }\right) \right. \nonumber \\&\qquad \left. \left( \frac{1}{E_{P_T}\lambda _{P_TS_R}}+\frac{\gamma }{\lambda _{S_TS_R}E_{\max }}\right) \right] \end{aligned}$$
(37)

where

$$\begin{aligned} E_i(\gamma )=\int _{\gamma }^{+\infty }\frac{e^{-x}}{x}dx. \end{aligned}$$
(38)

Using (1417) and by derivation, we deduce the PDF of SINR for underlay CRN

$$\begin{aligned}&f_{\Gamma ^{underlay}_{S_TS_R}}(\gamma )\nonumber \\&\quad =\frac{\left( 1-e^{-\frac{T}{E_{\max }\lambda _{S_TS_R}}}\right) e^{-\frac{N_0\gamma }{E_{\max }\lambda _{S_TS_R}}}}{\lambda _{S_TS_R}E_{\max }+\gamma \lambda _{P_TS_R}E_{P_T}} \nonumber \\&\qquad \times \left[ \frac{\lambda _{S_TS_R}E_{\max }\lambda _{P_TS_R}E_{P_T}}{\lambda _{S_TS_R}E_{\max }+\gamma \lambda _{P_TS_R}E_{P_T}}+\frac{N_0E_{P_T}\lambda _{P_TS_R}}{\lambda _{S_TS_R}E_{\max }}\right] \nonumber \\&\qquad +a(\gamma )e^{\frac{N_0}{E_{P_T}\lambda _{P_TS_R}}}\frac{T\lambda _{S_TS_R}}{\lambda _{S_TP_R}E_{P_T}\lambda _{P_TS_R}}e^{\frac{T\lambda _{S_TS_R}}{E_{P_T}\gamma \lambda _{P_TS_R}\lambda _{S_TP_R}}} \end{aligned}$$
(39)

where

$$\begin{aligned} a(\gamma )=\frac{E_i(b(\gamma ))}{\gamma ^2}+\frac{E_i(b(\gamma ))}{\gamma ^3}\frac{T\lambda _{S_TS_R}}{E_{P_T}\lambda _{P_TS_R}\lambda _{S_TP_R}}+\frac{e^{-b(\gamma )}}{\gamma b(\gamma )} \end{aligned}$$
(40)

and

$$\begin{aligned} b(\gamma )=\left( N_0+\frac{T\lambda _{S_TS_R}}{\gamma \lambda _{S_TP_R}}\right) \left( \frac{1}{E_{P_T}\lambda _{P_TS_R}}+\frac{\gamma }{E_{\max }\lambda _{S_TS_R}}\right) . \end{aligned}$$
(41)

Appendix 2

The CDF of \(E_{S_T}\) is equal to

$$\begin{aligned}&F_{E_{S_T}}(x)\nonumber \\&\quad =P(E_{S_T}<x)=1-P\left( \min \left( \frac{\beta E_{H}\alpha |g_{HS_T}|^{2}}{1-\alpha },\frac{I}{|g_{S_TP_{R}}|^{2}}\right) >x\right). \end{aligned}$$
(42)

Using (42) and since \(g_{HS_T}\) and \(g_{S_TP_{R}}\) are independent, we deduce

$$\begin{aligned} F_{E_{S_T}}(x)= 1-P\left( \frac{\beta E_{H}\alpha |g_{HS_T}|^{2}}{1-\alpha }>x\right) \nonumber \\ P\left( \frac{I}{|g_{S_TP_{R}}|^{2}}>x\right)= 1-P(|g_{HS_T}|^2>\frac{(1-\alpha )x}{\beta E_{H}\alpha })P(|g_{S_TP_{R}}|^{2}<\frac{I}{x}), \end{aligned}$$
(43)

In fact, \(P(min(X,Y)>x)=P(X>x)P(Y>x)\). We deduce

$$\begin{aligned} F_{E_{S_T}}(x)=1-e^{-\frac{x(1-\alpha )}{\lambda _{HS_T}\alpha E_H \beta }}[1-e^{-\frac{I}{x\lambda _{S_TP_R}}}]. \end{aligned}$$
(44)

Appendix 3

The SNR at \(S_R\) is defined as

$$\begin{aligned} \Gamma ^{underlay} _{S_TS_R}=E_{S_T} \frac{|h_{S_TS_R}|^2}{N_0}. \end{aligned}$$
(45)

Using the expression of CDF of \(E_{S_T}\) given in Appendix 2, we have

$$\begin{aligned} F_{\Gamma ^{underlay} _{S_TS_R}}(x) &= 1-\int _0^{+\infty }e^{-\frac{x(1-\alpha )}{v\lambda _{HS_T}\alpha E_H \beta }}\nonumber \\&\left[ 1-e^{-\frac{vI}{x\lambda _{S_TP_R}}}\right] \frac{N_0}{\lambda _{S_TS_R}} e^{\frac{-N_0v}{\lambda _{S_TS_R}}}dv. \end{aligned}$$
(46)

We use (Gradshteyn and Ryzhik 1994)

$$\begin{aligned} \int _0^{+\infty }e^{-Ax-\frac{B}{x}}dx=2\sqrt{\frac{B}{A}}K_1(2\sqrt{AB}), \forall A>0,B>0 \end{aligned}$$
(47)

to express the CDF of SNR as:

$$\begin{aligned} F_{\Gamma ^{underlay} _{S_TS_R}}(x) &= 1-2\sqrt{\frac{N_0(1-\alpha )x}{\alpha \beta E_H N_0\lambda _{S_TS_R}\lambda _{HS_T}}}\nonumber \\&K_1\left( 2\sqrt{\frac{N_0(1-\alpha )x}{\alpha \beta E_H\lambda _{S_TS_R}\lambda _{HS_T}}}\right) \nonumber \\&+\frac{2N_0}{\lambda _{S_TS_R}} \sqrt{\frac{(1-\alpha )x}{\lambda _{HS_T}\alpha \beta E_H\left( \frac{N_0}{\lambda {S_TS_R}}+\frac{I}{x\lambda _{S_TS_R}}\right) }}\nonumber \\&K_1\left( 2\sqrt{\frac{(1-\alpha )x}{\lambda _{HS_T}\alpha E_H \beta }\left( \frac{N_0}{\lambda _{S_TS_R}}+\frac{I}{x\lambda _{S_TP_R}}\right) }\right). \end{aligned}$$
(48)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alnwaimi, G. Adaptive Underlay/Interweave Transmission Protocol for Cognitive Radio Networks. Iran J Sci Technol Trans Electr Eng 45, 1191–1201 (2021). https://doi.org/10.1007/s40998-021-00439-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-021-00439-4

Keywords

Navigation