Skip to main content
Log in

A critical assessment and contact algorithm for the staggered grid material point method

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

The material point method (MPM) has demonstrated itself as an effective numerical method to simulate extreme events with large deformations. However, the original MPM suffers several defects caused by the particle quadrature, including cell crossing noise, low spatial integration accuracy, and loss of spatial convergence. Our newly developed staggered grid material point method (SGMP) employs the cell center quadrature to efficiently eliminate the cell crossing noise and to recover the spatial convergence. In this paper, the SGMP is further formulated with the updated stress last, updated stress first and modified updated stress last schemes. The energy errors of the SGMP with different schemes are derived analytically to study their accuracy and stability. The performance of the SGMP is critically assessed by investigating its performance in terms of convergence, stability, dissipation and efficiency theoretically and numerically. This study shows that the SGMP performs much better than the MPM. In addition, a contact algorithm is also developed for the SGMP to model the contact-impact problems, and is verified by several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Acosta, J.L.G., Vardon, P.J., Remmerswaal, G., Hicks, M.A.: An investigation of stress inaccuracies and proposed solution in the material point method. Comput. Mech. 65(2), 555–581 (2020) 

    Article  MathSciNet  Google Scholar 

  • Bardenhagen, S.G.: Energy conservation error in the material point method for solid mechanics. J. Comput. Phys. 180(1), 383–403 (2002)

    Article  Google Scholar 

  • Bardenhagen, S.G., Brackbill, J., Sulsky, D.: The material-point method for granular materials. Comput. Methods Appl. Mech. Eng. 187(3–4), 529–541 (2000)

    Article  Google Scholar 

  • Bardenhagen, S.G., Kober, E.M.: The generalized interpolation material point method. CMES Comput. Model. Eng. Sci. 5(6), 477–495 (2004)

    Google Scholar 

  • Brackbill, J.U., Kothe, D.B., Ruppel, H.M.: FLIP: a low-dissipation, particle-in-cell method for fluid flow. Comput. Phys. Commun. 48(1), 25–38 (1988)

    Article  Google Scholar 

  • Burgess, D., Sulsky, D., Brackbill, J.U.: Mass matrix formulation of the flip particle-in-cell method. J. Comput. Phys. 103(1), 1–15 (1992)

    Article  MathSciNet  Google Scholar 

  • Gan, Y., Sun, Z., Chen, Z., Zhang, X., Liu, Y.: Enhancement of the material point method using B-spline basis functions. Int. J. Numer. Methods Eng. 113(3), 411–431 (2018)

    Article  MathSciNet  Google Scholar 

  • Gilmanov, A., Acharya, S.: A hybrid immersed boundary and material point method for simulating 3D fluid-structure interaction problems. Int. J. Numer. Methods Fluids 56(12), 2151–2177 (2008)

    Article  Google Scholar 

  • Gong, M.: Improving the material point method. Ph.D. thesis, University of New Mexico (2015)

  • Gong, W., Liu, Y., Zhang, X., Ma, H.: Numerical investigation on dynamical response of aluminum foam subject to hypervelocity impact with material point method. CMES Comput. Model. Eng. Sci. 83(5), 527–545 (2012)

    Google Scholar 

  • Hageman, L.J., Walsh, J.: HELP, a multi-material Eulerian program for compressible fluid and elastic-plastic flows in two space dimensions and time, vol. 2. Fortran listing of HELP. Tech. rep, Systems, Science and Software, La Jolla, California (1971)

  • Hu, W., Chen, Z.: Model-based simulation of the synergistic effects of blast and fragmentation on a concrete wall using the MPM. Int. J. Impact Eng. 32(12), 2066–2096 (2006)

    Article  Google Scholar 

  • Huang, P., Zhang, X., Ma, S., Huang, X.: Contact algorithms for the material point method in impact and penetration simulation. Int. J. Numer. Methods Eng 85(4), 498–517 (2011)

    Article  Google Scholar 

  • Huang, P., Zhang, X., Ma, S., Wang, H.: Shared memory openmp parallelization of explicit mpm and its application to hypervelocity impact. CMES Comput. Model. Eng. Sci. 38(2), 119–148 (2008)

    MATH  Google Scholar 

  • Hut, P., Makino, J., Mcmillan, S.: Building a better leapfrog. Astrophys. J. 443(2), L93–L96 (1995)

    Article  Google Scholar 

  • Johnson, G.R., Holmquist, T.J.: Evaluation of cylinder-impact test data for constitutive model constants. J. Appl. Phys. 64(8), 3901–3910 (1988)

    Article  Google Scholar 

  • Kafaji, I.K.a.: Formulation of a dynamic material point method (MPM) for geomechanical problems. Ph.D. thesis, University of Stuttgart (2013)

  • Kularathna, S., Soga, K.: Implicit formulation of material point method for analysis of incompressible materials. Comput. Methods Appl. Mech. Eng. 313, 673–686 (2017)

    Article  MathSciNet  Google Scholar 

  • Li, J.G., Hamamoto, Y., Liu, Y., Zhang, X.: Sloshing impact simulation with material point method and its experimental validations. Comput. Fluids 103, 86–99 (2014)

    Article  MathSciNet  Google Scholar 

  • Lian, Y.P., Liu, Y., Zhang, X.: Coupling of membrane element with material point method for fluid membrane interaction problems. Int. J. Mech. Mater. Des. 10(2), 199–211 (2014)

    Article  Google Scholar 

  • Liang, Y., Benedek, T., Zhang, X., Liu, Y.: Material point method with enriched shape function for crack problems. Comput. Methods Appl. Mech. Eng. 322, 541–562 (2017)

    Article  MathSciNet  Google Scholar 

  • Liang, Y., Zhang, X., Liu, Y.: An efficient staggered grid material point method. Comput. Methods Appl. Mech. Eng. 352, 85–109 (2019)

    Article  MathSciNet  Google Scholar 

  • Liu, P., Liu, Y., Zhang, X.: Simulation of hyper-velocity impact on double honeycomb sandwich panel and its staggered improvement with internal-structure model. Int. J. Mech. Mater. Des. 12(2), 241–254 (2016)

    Article  MathSciNet  Google Scholar 

  • Liu, Y., Wang, H.K., Zhang, X.: A multiscale framework for high-velocity impact process with combined material point method and molecular dynamics. Int. J. Mech. Mater. Des. 9(2), 127–139 (2013)

    Article  Google Scholar 

  • Ma, S., Zhang, X., Qiu, X.: Comparison study of MPM and SPH in modeling hypervelocity impact problems. Int. J. Impact Eng. 36(2), 272–282 (2009)

    Article  Google Scholar 

  • Ma, Z., Zhang, X., Huang, P.: An object-oriented MPM framework for simulation of large deformation and contact of numerous grains. CMES Comput. Model. Eng. Sci. 55(1), 61 (2010)

    Google Scholar 

  • Nairn, J.A.: Material point method calculations with explicit cracks. CMES Comput. Model. Eng. Sci. 4(6), 649–663 (2003)

    MATH  Google Scholar 

  • Ni, R., Zhang, X.: A precise critical time step formula for the explicit material point method. Int. J. Numer. Methods Eng. 121(22), 4989–5016 (2020)

    Article  MathSciNet  Google Scholar 

  • Pan, X., Xu, A., Zhang, G., Zhang, P., Zhu, J.S., Ma, S., Zhang, X.: Three-dimensional multi-mesh material point method for solving collision problems. Commun. Theor. Phys. 49(5), 1129–1138 (2008)

    Article  Google Scholar 

  • Schreyer, H., Sulsky, D., Zhou, S.: Modeling delamination as a strong discontinuity with the material point method. Computer Methods Appl. Mech. Eng. 191(23–24), 2483–2507 (2002)

    Article  Google Scholar 

  • Steffen, M., Kirby, R.M., Berzins, M.: Analysis and reduction of quadrature errors in the material point method (MPM). Int. J. Numer. Methods Eng. 76(6), 922–948 (2008)

    Article  MathSciNet  Google Scholar 

  • Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Hoboken (1973)

    MATH  Google Scholar 

  • Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118, 179–186 (1994)

    Article  MathSciNet  Google Scholar 

  • Sulsky, D., Zhou, S.J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics. Comput. Phys. Commun. 87(1), 236–252 (1995)

    Article  Google Scholar 

  • Tan, H., Nairn, J.A.: Hierarchical, adaptive, material point method for dynamic energy release rate calculations. Comput. Methods Appl. Mech. Eng. 191(19–20), 2123–2137 (2002)

    Article  Google Scholar 

  • Tielen, R.: High-order material point method. Master’s thesis, Delft University of Technology (2016)

  • Wang, Y., Beom, H., Sun, M., Lin, S.: Numerical simulation of explosive welding using the material point method. Int. J. Impact Eng. 38(1), 51–60 (2011)

    Article  Google Scholar 

  • Wingate, C.A., Stellingwerf, R.F., Davidson, R.F., Burkett, M.W.: Models of high-velocity impact phenomena. Int. J. Impact Eng. 14(1–4), 819–830 (1993)

    Article  Google Scholar 

  • York, A.R., Sulsky, D., Schreyer, H.L.: Fluid-membrane interaction based on the material point method. Int. J. Numer. Methods Eng. 48(6), 901–924 (2000)

    Article  Google Scholar 

  • Zhang, D.Z., Ma, X., Giguere, P.T.: Material point method enhanced by modified gradient of shape function. J. Comput. Phys. 230(16), 6379–6398 (2011)

    Article  MathSciNet  Google Scholar 

  • Zhang, D.Z., Zou, Q., VanderHeyden, W.B., Ma, X.: Material point method applied to multiphase flows. J. Comput. Phys. 227(6), 3159–3173 (2008)

    Article  MathSciNet  Google Scholar 

  • Zhang, F., Zhang, X., Liu, Y.: An augmented incompressible material point method for modeling liquid sloshing problems. Int. J. Mech. Mater. Des. 14(1), 141–155 (2018)

    Article  MathSciNet  Google Scholar 

  • Zhang, F., Zhang, X., Sze, K.Y., Lian, Y., Liu, Y.: Incompressible material point method for free surface flow. J. Comput. Phys. 330, 92–110 (2017)

    Article  MathSciNet  Google Scholar 

  • Zhang, X., Chen, Z., Liu, Y.: The Material Point Method: A Continuum-Based Particle Method for Extreme Loading Cases. Academic Press, Cambridge (2016)

    Google Scholar 

  • Zukas, J.A. (ed.): High Velocity Impact Dynamics. Wiley, New York (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Zhang.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled ‘A Critical Assessment and Contact Algorithm for the Staggered Grid Material Point Method’.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the National Natural Science Foundation of China (11672154).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kan, L., Liang, Y. & Zhang, X. A critical assessment and contact algorithm for the staggered grid material point method. Int J Mech Mater Des 17, 743–766 (2021). https://doi.org/10.1007/s10999-021-09557-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-021-09557-7

Keywords

Navigation