1 Introduction

Let \(\Omega \subseteq \mathbb {R}^{N}\) be a bounded domain with a \(C^{2}\)-boundary \(\partial \Omega \). In this paper, we study the following singular eigenvalue problem for the Dirichlet (pq)-Laplacian

figure a

with \(\lambda >0\), \(0<\eta <1\) and \(1<q<p\).

For \(r\in (1,\infty )\), by \(\Delta _{r}\) we denote the r-Laplace differential operator defined by

$$\begin{aligned} \Delta _{r}u= \mathrm{div}(|Du|^{r-2}Du)\ \ \hbox { for all}\ \ u\in W^{1,r}(\Omega ). \end{aligned}$$

In \((P_{\lambda })\), we have the sum of two such operators. So, in problem \((P_{\lambda })\), the differential operator is nonhomogeneous and this is a source of difficulties in the study of \((P_{\lambda })\). Boundary value problems driven by a combination of two or more operators of different nature [(such as (pq)-equations], arise in many mathematical models of physical processes. One of the first such models was introduced by Cahn-Hilliard [6] describing the process of separation of binary alloys. Other applications can be found in Zakharov [36] (on plasma physics), in Benci-D’Avenia-Fortunato-Pisani [4] (on quantum physics), in Cherfils-Il’Yasov [7] (on reaction-diffusion systems) and in Bahrouni-Rǎdulescu-Repovš [2] (on transonic flow problems).

In the reaction of \((P_{\lambda })\), \(\lambda >0\) is a parameter, \(u\mapsto u^{-\eta }\) with \(0<\eta <1\) is a singular term and f(zx) is a Carathéodory perturbation (that is, for all \(x\in \mathbb {R}, z\mapsto f(z,x)\) is measurable on \(\Omega \) and for a.a \(z\in \Omega \), \(x\mapsto f(z,x)\) is continuous). We assume that for a.a \(z\in \Omega \), \(f(z,\cdot )\) is \((p-1)\)-superlinear near \(+\infty \). However, this superlinearity of the perturbation \(f(z,\cdot )\) is not formulated using the very common in the literature Ambrosetti–Rabinowitz condition (the AR-condition, for short), see Ref. [1]. Instead, we employ a less restrictive condition which incorporates in our framework also superlinear nonlinearities with ”slower” growth near \(+\infty \) which fail to satisfy the AR-condition. The main goal of the paper is to explore the existence of a positive solution to \((P_{\lambda })\). Using variational tools from the critical point theory together with truncations and comparison techniques, we show that \((P_{\lambda })\) has a continuous spectrum. More precisely, we prove a bifurcation-type theorem, producing a critical parameter value \(\lambda ^{*}>0\) such that

  • for all \(\lambda \in (0,\lambda ^{*})\), problem \((P_{\lambda })\) has at least two positive solutions;

  • for \(\lambda =\lambda ^{*}\), problem \((P_{\lambda })\) has at least one positive solution;

  • for all \(\lambda > \lambda ^{*}\), problem \((P_{\lambda })\) has no positive solution.

Moreover, we show that for every \(\lambda \in \mathcal {L}:=(0,\lambda ^{*}]\) problem \((P_{\lambda })\) admits a minimal positive solution \(u^{*}_{\lambda }\), and establish the monotonicity and continuity properties of the map \(\lambda \mapsto u^{*}_{\lambda }\).

Our work here extends that of Lü-Xie [25], who considered equations driven by the p-Laplacian only and \(f(z,x)=x^{r-1}\) with \(p<r<p^{*}\) (recall \( p^{*}= \left\{ \begin{array}{lll} \frac{Np}{N-p}&{} \hbox { if} \ p<N,\\ +\infty &{}\hbox { if} \ N\le p. \end{array}\right. \) the critical Sobolev exponent corresponding to p). In [25], the authors did not prove the precise dependence of the set of positive solutions on the parameter \(\lambda >0\), that is, they did not prove a bifurcation-type theorem as described above and they did not produce the minimum positive solution.

Other type of eigenvalue problems for the (pq)-Laplacian, but with no singular terms, can be found in Bobkov-Tanaka [5], Papageorgiou-Rǎdulescu-Repovš [27], Papageorgiou-Vetro-Vetro [31], Tanaka [35], Zeng-Bai-Gasiński-Winkert [37, 38] and the references therein. Elliptic problems with singular terms can be found in Ghergu-Rǎdulescu [15], Crandall-Rabinowitz-Tartar [9], Papageorgiou-Winkert [32], Bartušek-Fujimoto [3], Gasiński-Papageorgiou [14], Cîrstea-Ghergu-Rădulescu [8], Liu-Motreanu-Zeng [24], Dupaigne-Ghergu-Rădulescu [11], Papageorgiou-Vetro-Vetro [33]. A more detailed bibliography can be found in the book of Ghergu-Rădulescu [18].

2 Mathematical background, hypotheses and auxiliary results

The main spaces that will be used in the analysis of problem \((P_{\lambda })\) are the Sobolev space \(W^{1,p}_{0}(\Omega )\) and the Banach space \(C^{1}_{0}(\overline{\Omega })=\left\{ u\in C^{1}(\overline{\Omega })\,\mid \,u\big |_{\partial \Omega }=0\right\} \). By \(\Vert \cdot \Vert \) we denote the norm of the Sobolev space \(W^{1,p}_{0}(\Omega )\). On account of the Poincaré inequality, we have

$$\begin{aligned} \Vert u\Vert =\Vert Du\Vert _{p},\ \hbox { for all}\ \ u\in W^{1,p}_{0}(\Omega ). \end{aligned}$$

The Banach space \(C^{1}_{0}(\overline{\Omega })\) is ordered with positive (order) cone

$$\begin{aligned} C_{+}=\left\{ u\in C^{1}_{0}(\overline{\Omega })\,\mid \,u(z)\ge 0\ \ \hbox { for all} \ z\in \overline{\Omega } \right\} , \end{aligned}$$

which has nonempty interior given by

$$\begin{aligned} \mathrm {int} C_{+}=\left\{ u\in C_{+}\,\mid \,u(z)>0\ \hbox { for all } z\in \Omega \hbox { and }\ \frac{\partial u}{\partial n}\bigg |_{\partial \Omega }<0\right\} , \end{aligned}$$

with \(n(\cdot )\) being the outward unit normal on \(\partial \Omega \). We will also use another open cone in \(C^{1}(\overline{\Omega })\), namely, the cone

$$\begin{aligned} \mathrm {D}_{+}=\left\{ u\in C^{1}(\overline{\Omega })\,\mid \,u(z)>0\hbox { for all} \ z\in \Omega \hbox { and }\ \frac{\partial u}{\partial n}\bigg |_{\partial \Omega \cap u^{-1}(0)}<0 \right\} . \end{aligned}$$

Given \(u,v\in W^{1,p}_{0}(\Omega )\) with \(u\le v\), we set

$$\begin{aligned}&[u,v]=\{h\in W^{1,p}_{0}(\Omega )\,\mid \,u(z)\le h(z)\le v(z)\hbox { for a.a } z\in \Omega \},\\&[u)=\{h\in W_0^{1,p}(\Omega )\,\mid \,u(z)\le h(z) \hbox { for a.a } z\in \Omega \}. \end{aligned}$$

For \(x\in \mathbb {R}\), we set \(x^{\pm }= \max \ \{\pm x,0\}\). Then, for \(u\in W^{1,p}_{0}(\Omega )\), we define \(u^{\pm }(z)=u(z)^{\pm }\) for all \(z\in \Omega \). We know that

$$\begin{aligned} u=u^{+}-u^{-}, |u|=u^{+}+u^{-}\ \hbox { and} \ \ u^{\pm }\in W^{1,p}_{0}(\Omega ). \end{aligned}$$

We say that \(S\subseteq W^{1,p}_{0}(\Omega )\) is ”downward directed”, if for every pair \((u_{1}, u_{2})\in S\times S\), we can find \(u\in S\) such that \(u\le u_{1}\) and \(u\le u_{2}\). Given \(h_{1}, h_{2}\in L^{\infty }(\Omega )\), we write \(h_{1}\prec h_{2}\), if for each \(K \subseteq \Omega \) compact there exists a constant \(c_K>0\) such that

$$\begin{aligned} 0<c_{K}\le h_{2}(z)-h_{1}(z) \hbox { for a.a } z\in K. \end{aligned}$$

It is obvious that if \(h_{1}, h_{2}\in C(\Omega )\) and \( h_{1}(z)<h_{2}(z)\) for all \(z\in \Omega \), then \(h_{1}\prec h_{2}\).

With X a Banach space and \(\varphi \in C^{1}(X, \mathbb {R})\), we say that \(\varphi (\cdot )\) satisfies the ”C-condition”, if the following property holds:

  • every sequence \(\{u_{n}\}_{n\ge 1}\subseteq X \) such that

    $$\begin{aligned} \{\varphi (u_{n})\}_{n\ge 1}\subseteq \mathbb {R}\hbox { is bounded and } (1+\Vert u_{n}\Vert )\varphi '(u_n)\rightarrow 0 \hbox { in } X^{*} \hbox { as } n\rightarrow \infty , \end{aligned}$$

    admits a strongly convergent subsequence.

Also by \(K_{\varphi }\) we denote the critical set of \(\varphi (\cdot )\), that is, \(K_{\varphi }=\{u\in X\,\mid \, \varphi '(u)=0\}\).

For every \(r\in (1,\infty )\), by \(A_{r}:W^{1,r}_{0}(\Omega )\rightarrow W^{1,r}_{0}(\Omega )^{*}=W^{-1,r'}(\Omega ) \) \((\frac{1}{r}+\frac{1}{r'}=1)\) we denote the nonlinear map defined by

$$\begin{aligned} \langle A_{r}(u), h \rangle =\int _{\Omega }|Du|^{r-2}(Du, Dh)_{\mathbb {R}^{N}} \,dz \hbox { for all } u,h \in W^{1,r}_{0}(\Omega ). \end{aligned}$$

The following properties of \(A_{r}(\cdot )\) are well-known (see for example, Gasiński-Papageorgiou [13], Problem 2.192, p. 279).

Proposition 1

The map \(A_{r}:W^{1,r}_{0}(\Omega )\rightarrow W^{-1,r'}(\Omega ) \) is bounded (that is, maps bounded sets to bounded sets), continuous, strictly monotone (hence maximal monotone too) and type \((S)_{+}\), that is,

$$\begin{aligned} u_{n} \ {\mathop {\longrightarrow }\limits ^{w}} \ u \hbox { in } W^{1,r}_{0}(\Omega ) \hbox { and } \limsup \limits _{n\rightarrow \infty } \langle A_{r}(u_{n}),u_{n}-u\rangle \le 0 \Rightarrow u_{n}\rightarrow u \hbox { in } W^{1,p}_{0}(\Omega ). \end{aligned}$$

The hypotheses on the perturbation f(zx) are following:

\(\underline{H}\): \(f:\Omega \times \mathbb {R}\rightarrow \mathbb {R}\) is a Carathéodory function such that \(f(z,0)=0\) for a.a \(z\in \Omega \) and

  1. (i)

    \(f(z,x)\le \alpha (z) [1+x^{r-1}]\) for a.a \(z\in \Omega \), all \(x\ge 0\), with \(\alpha \in L^{\infty }(\Omega )_+\) and \(p<r<p^{*}\);

  2. (ii)

    if \(F(z,x)=\int ^{x}_{0}f(z,s)\,ds\), then \(\lim _{x\rightarrow +\infty } \frac{F(z,x)}{x^{p}}=+\infty \) uniformly for a.a \(z\in \Omega \);

  3. (iii)

    if \(e(z,x)=\left[ 1-\frac{p}{1-\eta }\right] x^{1-\eta }+f(z,x)x-pF(z,x)\), then there exists \(\beta \in L^{1}(\Omega )_+\) such that

    $$\begin{aligned} e(z,x)\le e(z,y)+\beta (z)\ \ \hbox { for a.a}\ \ z\in \Omega , \ \ \hbox { all}\ \ 0\le x \le y; \end{aligned}$$
  4. (iv)

    there exist \(\delta > 0\) and \(\tau \in (1,q)\) such that

    $$\begin{aligned} c_{0}x^{\tau -1}\le f(z,x) \hbox { for a.a } z\in \Omega , \hbox { all } x\in [0,\delta ], \hbox { with } c_{0}>0, \end{aligned}$$

    and for all \(s>0\), we have

    $$\begin{aligned} 0< m_{s}\le f(z,x) \hbox { for a.a } z\in \Omega , \hbox { all } x\ge s; \end{aligned}$$
  5. (v)

    for every \(\rho >0\), there exists \(\widehat{E}_{\rho }> 0\) such that for a.a \(z\in \Omega \), the function

    $$\begin{aligned} x\mapsto f(z,x)+\widehat{E}_{\rho }x^{p-1} \end{aligned}$$

    is nondecreasing on \([0,\rho ]\).

Remark 2

Since our goal is to find positive solutions for problem \((P_{\lambda })\) and all the above hypotheses concern the positive semiaxis \(\mathbb {R}_{+}=[0,+\infty )\), without any loss of generality, we may assume that

$$\begin{aligned} f(z,x)=0\ \ \hbox { for a.a}\ z\in \Omega ,\ \hbox { all}\ x\le 0. \end{aligned}$$
(1)

Hypotheses H(ii) and (iii) imply that

$$\begin{aligned} \lim \limits _{x\rightarrow +\infty } \frac{f(z,x)}{x^{p-1}}=+\infty \ \hbox { uniformly for a.a}\ x\in \Omega , \end{aligned}$$

that is, for a.a \(z\in \Omega \) the perturbation \(f(z,\cdot )\) is \((p-1)\)-superlinear. Often in the literature superlinear problems are treated by using the AR-condition. In our case, on account of (1), we will state a unilateral version of this condition. According to the AR-condition, there exist \(\mu > p\) and \(M>0\) such that

$$\begin{aligned}&0 < \mu F(z,x)\le f(z,x)x \ \ \hbox { for a.a}\ z\in \Omega ,\ \ \hbox { all}\ x\ge M, \end{aligned}$$
(2)
$$\begin{aligned}&0 < ess\inf _{\Omega }F(\cdot ,M) \end{aligned}$$
(3)

(see Ambrosetti–Rabinowitz [1]). Integrating (2) and using (3), we obtain the following weaker condition

$$\begin{aligned}&c_{1}x^{\mu }\le F(z,x)\ \ \hbox { for a.a}\ z\in \Omega ,\ \ \hbox { all}\ x\ge M, \ \hbox { some}\ c_{1}>0\\&\quad \Rightarrow c_{1}x^{\mu -1}\le f(z,x)\ \ \hbox { for}\ a.a\ z\in \Omega ,\ \ \hbox { all}\ x\ge M. \end{aligned}$$

So, the AR-condition restricts \(f(z,\cdot )\) to have at least \((\mu -1)\)-polynomial growth near \(+\infty \). In contrast, the quasimonotonicity condition that we use in this work (see hypothesis H(iii)), does not impose such a restriction on the growth of \(f(z,\cdot )\) and permits also the consideration of superlinear nonlinearities with slower growth near \(+\infty \) (see the examples below). Besides, hypothesis H(iii) is a slight extension of a condition used by Li-Yang[23]. There are convenient ways to verify H(iii). So, the hypothesis H(iii) holds, if we can find \(M>0\) such that for a.a \(z\in \Omega \)

$$\begin{aligned}&x\mapsto \frac{x^{-\eta }+f(z,x)}{x^{p-1}} \ \ \hbox { is nondecreasing on}\ \ [M,+\infty ) \\ \ \ \hbox { or}&x\mapsto e(z,x) \ \ \hbox { is nondecreasing on}\ \ [M,+\infty ). \end{aligned}$$

Hypothesis H(iv) implies the presence of a concave term near zero, while hypothesis H(v) is a one sided local Hölder condition. It is satisfied, if for a.a \(x\in \Omega \), \(f(z,\cdot )\) is differentiable and for every \(\rho >0\) we can find \(\widehat{c}_{\rho }> 0\) such that

$$\begin{aligned} -\widehat{c}_{\rho }x^{p-1}\le f'_{x}(z,x)x \hbox { for a.a } z\in \Omega , \hbox { all } 0\le x\le \rho . \end{aligned}$$

Example 3

Consider the following functions (for the sake of simplicity, we drop the z-dependence):

$$\begin{aligned}&f_{1}(x)= \left\{ \begin{array}{lll} x^{\tau -1} \ \ \hbox { if}\ \ 0 \le x \le 1 \\ x^{r-1} \ \ \hbox { if}\ \ 1<x \end{array}\right. \ \ \hbox { with}\ \ 1<\tau<q<p<r<p^{*} \\&f_{2}(x)= \left\{ \begin{array}{lll} x^{\tau -1} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \hbox { if}\ 0\le x\le 1 \\ x^{p-1}\ln x+x^{s-1} \ \ \hbox { if}\ \ 1< x \end{array}\right. \ \ \hbox { with}\ 1<\tau<q<p, 1<s<p \end{aligned}$$

(see (1)). Both functions satisfy hypotheses H, but only \(f_{1}(\cdot )\) satisfies the AR-condition.

As always by a solution of problem \((P_\lambda )\), we mean a ”weak solution”, namely, a function \(u\in W_0^{1,p}(\Omega )\) such that \(u^{-\eta }h\in L^1(\Omega )\) for all \(h\in W_0^{1,p}(\Omega )\) and

$$\begin{aligned} \langle A_p(u),h\rangle +\langle A_q(u),h\rangle =\int _\Omega \lambda [u^{-\eta }+f(z,u)]h\,dz\hbox { for all }h\in W_0^{1,p}(\Omega ). \end{aligned}$$

The difficulty that we encounter in the analysis of problem \((P_{\lambda })\) is that the energy (Euler) function of the problem \(\varphi _{\lambda }:W^{1,p}_{0}(\Omega )\rightarrow \mathbb {R}\) defined by

$$\begin{aligned} \varphi _{\lambda }(u)=\frac{1}{p}\Vert Du\Vert ^{p}_{p}+\frac{1}{q}\Vert Du\Vert ^{q}_{q}-\lambda \int _{\Omega } \left[ \frac{1}{1-\eta }(u^{+})^{1-\eta }+F(z,u^{+})\right] \,dz \end{aligned}$$

for all \(u\in W^{1,p}_{0}(\Omega )\), is not \(C^{1}\) (due to the singular term). So, we can not use the minimax methods of critical point theory directly on \(\varphi _{\lambda }(\cdot )\). We have to find ways to bypass the singularity and to deal with \(C^{1}\)-functionals.

On account of hypotheses H(i) and (iv), we can find \(c_{2}>0\) such that

$$\begin{aligned} c_{0}x^{\tau -1}-c_{2}x^{r-1}\le f(z,x) \hbox { for a.a } x\in \Omega , \hbox { all } x\ge 0. \end{aligned}$$
(4)

This unilateral growth estimate on \(f(z,\cdot )\) leads to the following auxiliary Dirichlet (pq)-equation

figure b

with \(\lambda >0\) and \(1<\tau<q<p<r<p^*\).

Proposition 4

For every \(\lambda >0\), problem \((Q_{\lambda })\) admits a unique positive solution \(\underline{u}_{\lambda }\in \mathrm {int} C_{+}\) and \(\underline{u}_{\lambda }\rightarrow 0\) in \( C^{1}_{0}(\overline{\Omega })\ \hbox { as}\ \lambda \rightarrow 0^{+}\).

Proof

First we prove the existence of a positive solution. To this end, let \(\psi _{\lambda }:W^{1,p}_{0}(\Omega )\) \(\rightarrow \mathbb {R}\) be the \(C^{1}\)-functional defined by

$$\begin{aligned} \psi _{\lambda }(u)=\frac{1}{p}\Vert Du\Vert ^{p}_{p}+\frac{1}{q}\Vert Du\Vert ^{q}_{q}+\lambda \frac{c_{2}}{r}\Vert u^{+}\Vert ^{r}_{r} -\lambda \frac{c_{0}}{\tau }\Vert u^{+}\Vert ^{\tau }_{\tau } \ \ \hbox { for all}~ u\in W^{1,p}_{0}(\Omega ). \end{aligned}$$

Since \(1<\tau<q<p<r\), it is clear that \(\psi _{\lambda }(\cdot )\) is coercive. Also using the Sobolev embedding theorem, we see that \(\psi _{\lambda }(\cdot )\) is sequentially weakly lower semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find \(\underline{u}_{\lambda }\in W^{1,p}_{0}(\Omega )\) such that

$$\begin{aligned} \psi _{\lambda }(\underline{u}_{\lambda })=\mathrm {min}\left[ \psi _{\lambda }(u)\,\mid \,u\in W^{1,p}_{0}(\Omega )\right] . \end{aligned}$$
(5)

Recall that \(1<\tau<q<p<r\), if \(u\in \mathrm {int}C_{+}\) and \(t\in (0,1)\) is small, we have

$$\begin{aligned} \psi _{\lambda }(tu)<0\quad \Rightarrow \quad \psi _{\lambda }(\underline{u}_{\lambda })<0=\psi _{\lambda }(0) \hbox { (see}(5)) \quad \Rightarrow \quad \underline{u}_{\lambda }\ne 0. \end{aligned}$$

Using (5) again, we have

$$\begin{aligned} \psi '_{\lambda }(\underline{u}_{\lambda })=0, \end{aligned}$$

i.e.,

$$\begin{aligned} \langle A_{p}(\underline{u}_{\lambda }),h\rangle + \langle A_{q}(\underline{u}_{\lambda }),h\rangle =\lambda \int _{\Omega }c_{0}(\underline{u}_{\lambda }^+)^{\tau -1}h\,dz -\lambda \int _{\Omega }c_{2}(\underline{u}_{\lambda }^+)^{r-1}h\,dz \end{aligned}$$
(6)

for all \(h\in W^{1,p}_{0}(\Omega )\). In (6), we choose \(h=\underline{u}^{-}_{\lambda }\in W^{1,p}_{0}(\Omega )\). Then

$$\begin{aligned} \Vert \underline{u}^{-}_{\lambda }\Vert ^{p}\le 0 \quad \Rightarrow \quad \underline{u}_{\lambda }\ge 0\hbox { and }\underline{u}_{\lambda }\ne 0. \end{aligned}$$

Therefore, it holds

$$\begin{aligned} -\Delta _{p}\underline{u}_{\lambda }(z)-\Delta _{q}\underline{u}_{\lambda }(z) =\lambda [c_{0}\underline{u}_{\lambda }(z)^{\tau -1}-c_{2}\underline{u}_{\lambda }(z)^{r-1}] \ \ \hbox { for a.a}\ z\in \Omega . \end{aligned}$$
(7)

But, Theorem 7.1, p. 286, of Ladyzhenskaya-Ural’tseva [20] implies that \(\underline{u}_{\lambda }\in L^{\infty }(\Omega )\). Then, the nonlinear regularity theory of Lieberman [22] says that \(\underline{u}_{\lambda } \in C_{+}\setminus \{0\}\). Moreover, from (7) we have

$$\begin{aligned} \Delta _{p}\underline{u}_{\lambda }(z)+\Delta _{q}\underline{u}_{\lambda }(z) \le \lambda c_{2}\Vert \underline{u}_{\lambda }\Vert ^{r-p}_\infty \underline{u}_{\lambda }(z)^{p-1} \ \ \hbox { for a.a}\ z\in \Omega . \end{aligned}$$

Hence, the nonlinear maximum principle of Pucci-Seerin [34] (pp. 111, 120) implies that \(\underline{u}_{\lambda }\in \mathrm {int}C_{+}\).

Next we show the uniqueness of this positive solution. Suppose that \(\underline{\hat{u}}_{\lambda }\in W^{1,p}_{0}(\Omega )\) is another positive solution of \((Q_{\lambda })\). As above, we show that \(\underline{\hat{u}}_{\lambda }\in \mathrm {int}C_{+}\). We introduce the integral functional \(j:L^{1}(\Omega )\rightarrow \overline{\mathbb {R}}=\mathbb {R}\cup \{+\infty \}\) defined by

$$\begin{aligned} j(u):= \left\{ \begin{array}{lll} \displaystyle \frac{1}{p}\Vert Du^{1/\tau }\Vert ^{p}_{p}+\frac{1}{q}\Vert Du^{1/\tau }\Vert ^{q}_{q} &{}\hbox { if } u\ge 0\hbox { and } u^{1/\tau }\in W^{1,p}_{0}(\Omega ),\\ +\infty &{} \hbox { otherwise}. \end{array}\right. \end{aligned}$$

From Lemma 1 (and its proof) of Diaz-Saa [10], we have that the integral functional \(j(\cdot )\) is convex (recall that \(1<\tau<q<p\)).

Let dom\(j=\{u\in L^{1}(\Omega )\,\mid \,j(u)<+\infty \}\) (the effective domain of \(j(\cdot )\)). We let \(h=\underline{u}_{\lambda }^{\tau }-\hat{\underline{u}}^{\tau }_{\lambda }\in C^{1}_{0}(\overline{\Omega })\). Since \(\underline{u}_{\lambda },\hat{\underline{u}}_{\lambda }\in \mathrm {int}C_{+}\), for \(|t|<1\) small, we have

$$\begin{aligned} {\underline{u}}^\tau _{\lambda }+th \in domj \hbox { and }\underline{\hat{u}}^\tau _{\lambda }+th\in domj \end{aligned}$$

(see Papageorgrou-Radulescu-Repovs [28], Proposition 4.1.22, p. 274). Then we have the Gâteaux differentiability of \(j(\cdot )\) at \(\underline{u}^{\tau }_{\lambda }\) and at \(\hat{\underline{u}}^{\tau }_{\lambda }\) in the direction h, respectively. Moreover, using the nonlinear Green’s identity (see Papageorgrou-Rǎdulescu-Repovš [28], Corollary 1.5.17, p. 35), we have

$$\begin{aligned} j'_{\lambda }(\underline{u}^{\tau }_{\lambda })(h) =\frac{1}{\tau }\int _{\Omega }\frac{-\Delta _{p}\underline{u}_{\lambda }-\Delta _{q}\underline{u}_{\lambda }}{\underline{u}^{\tau -1}_{\lambda }}h\,dz=\int _{\Omega }\lambda [c_{0}-c_{2}\underline{u}_{\lambda }^{r-\tau }]h\,dz, \\ j'_{\lambda }(\hat{\underline{u}}^{\tau }_{\lambda })(h) =\frac{1}{\tau }\int _{\Omega }\frac{-\Delta _{p}\hat{\underline{u}}_{\lambda }-\Delta _{q}\hat{\underline{u}}_{\lambda }}{\hat{\underline{u}}^{\tau -1}_{\lambda }}h\,dz=\int _{\Omega }\lambda [c_{0}-c_{2}\hat{\underline{u}}_{\lambda }^{r-\tau }]h\,dz. \end{aligned}$$

Whereas, the convexity of \(j(\cdot )\) implies the monotonicity of \(j'(\cdot )\). So, we have

$$\begin{aligned} 0\le \lambda c_{2}\int _{\Omega }[{\hat{\underline{u}}^{r-\tau }_{\lambda }}-\underline{u}^{r-\tau }_{\lambda }] (\underline{u}^{\tau }_{\lambda }-{\hat{\underline{u}}^{\tau }_{\lambda }}) \,dz \quad \Rightarrow \quad \underline{u}_{\lambda }=\widehat{u}_{\lambda }. \end{aligned}$$

This proves the uniqueness of the positive solution \(\underline{u}_{\lambda }\in \mathrm {int}C_{+}\) of problem \((Q_{\lambda })\).

For every \(\lambda >0\), we have

$$\begin{aligned}&\Vert \underline{u}\Vert ^{p}\le \lambda \hat{c}\Vert \underline{u}\Vert ^{\tau } \hbox { for some }\hat{c}>0\quad \Rightarrow \quad \Vert \underline{u}_{\lambda }\Vert ^{p-\tau }\le \lambda \hat{c},\\&\quad \Rightarrow \underline{u}_{\lambda }\rightarrow 0 \hbox { in } W^{1,p}_{0}(\Omega ) \hbox { as } \lambda \rightarrow 0^{+}. \end{aligned}$$

Then, the nonlinear regularity theorem of Lieberman [22] and the compact embedding of \(C^{1,\alpha }_{0}(\overline{\Omega }):=C^{1,\alpha }(\overline{\Omega })\bigcap C^{1}_{0}(\overline{\Omega })\) \( (0<\alpha <1)\) into \(C^{1}_{0}(\overline{\Omega })\), imply that

$$\begin{aligned} \underline{u}_{\lambda }\rightarrow 0 \ \ \ \hbox { in}\ \ C^{1}_{0}(\overline{\Omega }) \ \ \ \hbox { as}\ \ \lambda \rightarrow 0^{+}. \end{aligned}$$

This completes the proof of the proposition. \(\square \)

Next we consider another auxiliary Dirichlet problem

figure c

with \(\lambda >0\), \(0<\eta <1\) and \(1<q<p\).

Proposition 5

For every \(\lambda >0\), problem \((N_{\lambda })\) has a unique solution \(\overline{u}_{\lambda }\in \mathrm{int}C_{+}\) and we can find \(\lambda _{0}>0\) such that for all \(\lambda \in (0,\lambda _{0}]\) it holds

$$\begin{aligned} \underline{u}_{\lambda }\le \overline{u}_{\lambda }. \end{aligned}$$

Proof

Let \(\hat{d}(z)=d(z,\partial \Omega )\) for all \(z\in \overline{\Omega }\). Lemma 14.16, p. 335, of Gilbarg-Trudinger [17] says that we can find \(\delta _{0}>0\) such that \(\hat{d}\in C^{2}(\Omega _{\delta _{0}})\) with \(\Omega _{\delta _{0}}=\{z\in \overline{\Omega }\,\mid \,\hat{d}(z)<\delta _{0}\}\). It follows that \(\hat{d}\in \mathrm {int}C_{+}\) and so by Proposition 4.1.22, p. 274 of Papageorgiou-Rǎdulescu-Repovš [28], we can find \(c_{3}=c_{3}(\underline{u}_{\lambda })>0\) and \(c_{4}=c_{4}(\underline{u}_{\lambda })>0\) such that

$$\begin{aligned} c_3\hat{d}\le \underline{u}_{\lambda }\le c_{4}\hat{d}. \end{aligned}$$
(8)

Then we can apply Theorem B.1 of Giacomoni-Saoudi [16] (see also Lieberman [22]) to produce a unique solution \(\overline{u}_{\lambda }\in C_{+}\setminus \{0\}\) to problem \((N_{\lambda })\). In fact the nonlinear maximum principle of Pucci-Serern [34] (pp. 111, 120) implies that \(\overline{u}_{\lambda }\in \mathrm {int}C_{+}\).

Next we show that there exists \(\lambda _{0}>0\) such that for all \(0<\lambda \le \lambda _{0}\), we have \(\underline{u}_{\lambda }\le \overline{u}_{\lambda }\). Acting on \((N_{\lambda })\) with \(\overline{u}_{\lambda }\in \mathrm {int}C_{+}\), we obtain

$$\begin{aligned}&\Vert D \overline{u}_{\lambda }\Vert ^{p}_{p} \le \lambda \int _{\Omega }\underline{u}^{1-\eta }_{\lambda } \frac{\overline{u}_{\lambda }}{\underline{u}_{\lambda }}\,dz \\&\quad \le \lambda c_{5}\int _{\Omega }\frac{\overline{u}_{\lambda }}{\hat{d}}\,dz \hbox { for some } c_{5}>0\hbox { (see Proposition}~4\hbox { and } (8)) \\&\le \lambda c_{6}\Vert D\overline{u}_{\lambda }\Vert _{p} \hbox { (by Hardy's inequality)}. \end{aligned}$$

So, we have \(\{\overline{u}_{\lambda }\}_{\lambda \in (0,1]}\subseteq W^{1,p}_{0}(\Omega )\) is bounded. Then, from [12] and Lemma A.6 of Giacommoni-Sooudi [16] (see also Ladyzhenskaya-Ural’tseva [20] Theorem 7.1, p. 286), we obtain that

$$\begin{aligned} \{\overline{u}_{\lambda }\}_{\lambda \in (0,1]}\subseteq L^{\infty }(\Omega ) \ \ \hbox { is bounded}. \end{aligned}$$
(9)

On account of (9) and hypothesis H(i), we can find \(\lambda _{0}\in (0,1]\) such that

$$\begin{aligned} \lambda f(z,\overline{u}_{\lambda }(z))\le 1 \hbox { for a.a } z\in \Omega \hbox { all } 0<\lambda \le \lambda _{0}. \end{aligned}$$
(10)

Then, for \(\lambda \in (0,\lambda _{0}]\), we consider the Carathéodory function \(k_{\lambda }(z,x)\) defined by

$$\begin{aligned} k_{\lambda }(z,x)= \left\{ \begin{array}{lll} \lambda [c_{0}(x^{+})^{\tau -1}-c_{2}(x^{+})^{r-1}]&{} \hbox { if } x\le \overline{u}_{\lambda }(z), \\ \lambda [c_{0}\overline{u}_{\lambda }(z)^{\tau -1}-c_{2}\overline{u}_{\lambda }(z)^{r-1}]&{} \hbox { if } \overline{u}_{\lambda }(z)<x. \end{array}\right. \end{aligned}$$
(11)

We set \(K_{\lambda }(z,x)=\int ^{x}_{0}k_{\lambda }(z,s)\,ds\) and consider the \(C^{1}\)-functional \(\delta _{\lambda }:W^{1,p}_{0}(\Omega )\rightarrow \mathbb {R}\) defined by

$$\begin{aligned} \delta _{\lambda }(u)=\frac{1}{p}\Vert Du\Vert ^{p}_{p}+\frac{1}{q}\Vert Du\Vert ^{q}_{q} -\int _{\Omega }K_{\lambda }(z,u)\,dz&\hbox { for all }u\in W^{1,p}_{0}(\Omega ). \end{aligned}$$
(12)

Evidently \(\delta _{\lambda }(\cdot )\) is coercive (see (9)) and sequentially weakly lower semicontinuous. So, we can find \(\widetilde{u}_{\lambda }\in W^{1,p}_{0}(\Omega )\) such that

$$\begin{aligned}&\delta _{\lambda }(\widetilde{u}_{\lambda })=\mathrm {min}\left[ \delta _{\lambda }(u)\,\mid \,u\in W^{1,p}_{0}(\Omega )\right]<0=\delta _{\lambda }(0) \ \ \hbox { (since } 1<\tau<q<p<r), \end{aligned}$$
(13)
$$\begin{aligned}&\quad \Rightarrow \widetilde{u}_{\lambda }\ne 0. \end{aligned}$$
(14)

From (12) and (13), we have

$$\begin{aligned} \langle A_{p}(\widetilde{u}_{\lambda }),h \rangle + \langle A_{q}(\widetilde{u}_{\lambda }),h \rangle =\int _{\Omega } k_{\lambda }(z,\tilde{u}_{\lambda })h\,dz&\hbox { for all }h\in W^{1,p}_{0}(\Omega ). \end{aligned}$$
(15)

In (15), first, we choose \(h=-\tilde{u}^{-}_{\lambda }\in W^{1,p}_{0}(\Omega )\) to obtain \(\tilde{u}_{\lambda }\ge 0\) and \(\tilde{u}_{\lambda }\ne 0\) (see (14)). Next, in (15), we take \(h=[\tilde{u}_{\lambda }-\overline{u}_{\lambda }]^{+}\in W^{1,p}_{0}(\Omega )\) to find

$$\begin{aligned}&\langle A_{p}(\widetilde{u}_{\lambda }),(\widetilde{u}_{\lambda }-\overline{u}_{\lambda })^{+}\rangle + \langle A_{q}(\widetilde{u}_{\lambda }),(\widetilde{u}_{\lambda }-\overline{u}_{\lambda })^{+}\rangle \\&\quad =\int _{\Omega } \lambda [c_{0}\overline{u}_{\lambda }^{\tau -1}-c_{2}\overline{u}_{\lambda }^{r-1}](\widetilde{u}_{\lambda }-\overline{u}_{\lambda })^{+}\,dz \hbox { (see }(11)) \\&\quad \le \int _{\Omega } \lambda f(z,\overline{u}_{\lambda })(\widetilde{u}_{\lambda }-\overline{u}_{\lambda })^{+}\,dz \hbox { (see }(4)) \\&\quad \le \int _{\Omega }[\lambda \underline{u}^{-\eta }_{\lambda }+1](\widetilde{u}_{\lambda }-\overline{u}_{\lambda })^{+}\,dz \hbox { for }0<\lambda \le \lambda _{0} \hbox { (see }(10)) \\&\quad =\langle A_{p}(\overline{u}_{\lambda }),(\widetilde{u}_{\lambda }-\overline{u}_{\lambda })^{+}\rangle +A_{q}(\overline{u}_{\lambda }),(\widetilde{u}_{\lambda }-\overline{u}_{\lambda })^{+}\rangle \\&\quad \Rightarrow \widetilde{u}_{\lambda }\le \overline{u}_{\lambda }. \end{aligned}$$

So, we have proved that

$$\begin{aligned} \widetilde{u}_{\lambda }\in [0,\overline{u}_{\lambda }],\ \widetilde{u}_{\lambda }\ne 0. \end{aligned}$$
(16)

From (11), (15), (16) and Proposition 4, we infer that

$$\begin{aligned} \widetilde{u}_{\lambda }=\underline{u}_{\lambda }\quad \Rightarrow \quad \underline{u}_{\lambda }\le \overline{u}_{\lambda } \hbox { for all } 0< \lambda \le \lambda _{0}\hbox { (see }(16)). \end{aligned}$$

This completes the proof of the proposition. \(\square \)

Remark 6

From the above proof we have \(\underline{u}_{\lambda }^{-\eta }h\in L^1(\Omega )\) for all \(h\in W^{1,p}_{0}(\Omega )\), while from the proof of the Lemma in Lazer-McKenna [21], we have that \(\underline{u}^{-\eta }_{\lambda }\in L^1(\Omega )\).

3 Positive solutions

We introduce the following two sets

$$\begin{aligned} \mathcal {L}:=\left\{ \lambda >0\,\mid \,\hbox { problem }(P_{\lambda }) \hbox { admits a positive solution}\right\} , \end{aligned}$$

and \(S_{\lambda }\) the set of positive solutions to problem \((P_{\lambda })\).

First, we show the nonemptiness of \(\mathcal {L}\).

Proposition 7

If hypotheses H hold, then \(\mathcal {L}\ne \varnothing \).

Proof

Let \(\lambda _{0}>0\) be as postulated by Proposition 5, and let \(\lambda \in (0,\lambda _{0}]\). We have

$$\begin{aligned} \underline{u}_{\lambda }\le \overline{u}_{\lambda }\ \ \hbox { and}\ \ \lambda f(z,\overline{u}_{\lambda }(z))\le 1\hbox { for a.a }z\in \Omega \end{aligned}$$
(17)

(see Proposition 5 and its proof). We introduce the following truncation of the reaction of the problem \((P_{\lambda })\)

$$\begin{aligned}&g_{\lambda }(z,x)= \left\{ \begin{array}{lll} \lambda [\underline{u}_{\lambda }(z)^{-\eta }+f(z,\underline{u}_{\lambda }(z))]&{}\hbox { if }x<\underline{u}_{\lambda }(z), \\ \lambda [x^{-\eta }+f(z,x)] &{}\hbox { if }\underline{u}_{\lambda }(z)\le x\le \overline{u}_{\lambda }(z), \\ \lambda [\overline{u}_{\lambda }(z)^{-\eta }+f(z,\overline{u}_{\lambda }(z))]&{}\hbox { if } \overline{u}_{\lambda }(z)<x. \end{array}\right. \end{aligned}$$
(18)

This is a Carathéodory function. We set \(G_{\lambda }(z,x)=\int ^{x}_{0}g_{\lambda }(z,s)\,ds\) and consider the functional \(\hat{\varphi }_{\lambda }:W^{1,p}_{0}(\Omega )\rightarrow \mathbb {R}\) defined by

$$\begin{aligned} \hat{\varphi }_{\lambda }(u)=\frac{1}{p}\Vert Du\Vert ^{p}_{p}+\frac{1}{q}\Vert Du\Vert ^{q}_{q} -\int _{\Omega }G_{\lambda }(z,u)\,dz\hbox { for all } u\in W^{1,p}_{0}(\Omega ). \end{aligned}$$

Then, \(\hat{\varphi }_{\lambda }\in C^{1}(W^{1,p}_{0}(\Omega ),\mathbb {R})\) (see Papagerogiou-Smyrlis [30], Proposition 3). From (18), we see that \(\widehat{\varphi }_{\lambda }(\cdot )\) is coercive. Also it is sequentially weakly lower semicontinuous. So, we can find \(u_{\lambda }\in W^{1,p}_{0}(\Omega )\) such that

$$\begin{aligned}&\widehat{\varphi }_{\lambda }(u_{\lambda })=\mathrm {min}\left[ \widehat{\varphi }_{\lambda }(u)\,\mid \,u\in W^{1,p}(\Omega )\right] , \nonumber \\&\quad \Rightarrow \widehat{\varphi }'_{\lambda }(u_{\lambda })=0, \nonumber \\&\quad \Rightarrow \langle A_{p}(u_{\lambda }),h\rangle +\langle A_{q}(u_{\lambda }),h\rangle =\int _{\Omega }g_{\lambda }(z,u_{\lambda })h\,dz \hbox { for all } h\in W^{1,p}_{0}(\Omega ). \end{aligned}$$
(19)

In (19), first, we choose \(h=(u_{\lambda }-\overline{u}_{\lambda })^{+}\in W^{1,p}_{0}(\Omega )\) to get

$$\begin{aligned}&\langle A_{p}(u_{\lambda }),(u_{\lambda }-\overline{u}_{\lambda })^{+}\rangle + \langle A_{q}(u_{\lambda }),(u_{\lambda }-\overline{u}_{\lambda })^{+}\rangle \\&\quad =\int _{\Omega }\lambda [\overline{u}^{-\eta }_{\lambda }+f(z,\overline{u}_{\lambda })](u_{\lambda }-\overline{u}_{\lambda })^{+}\,dz\hbox { (see }(18))\\&\quad \le \int _{\Omega }[\lambda \underline{u}^{-\eta }_{\lambda }+1](u_{\lambda }-\overline{u}_{\lambda })^{+}dz\hbox { (see }(17)) \\&\quad =\langle A_{p}(\overline{u}_{\lambda }),(u_{\lambda }-\overline{u}_{\lambda })^{+}\rangle +\langle A_{q}(\overline{u}_{\lambda }),(u_{\lambda }-\overline{u}_{\lambda })^{+}\rangle \hbox { (see Proposition}~5) \\&\quad \Rightarrow u_{\lambda }\le \overline{u}_{\lambda }. \end{aligned}$$

Next, in (19), we take \(h=(\underline{u}_{\lambda }-u_{\lambda })^{+}\in W^{1,p}_{0}(\Omega )\). It finds

$$\begin{aligned}&\langle A_{p}(u_{\lambda }),(\underline{u}_{\lambda }-u_{\lambda })^{+}\rangle + \langle A_{q}(u_{\lambda }),(\underline{u}_{\lambda }-u_{\lambda })^{+}\rangle \\&\quad =\int _{\Omega }\lambda [\underline{u}^{-\eta }_{\lambda }+f(z,\underline{u}_{\lambda })](\underline{u}_{\lambda }-u_{\lambda })^{+}\,dz \hbox { (see }(18)) \\&\quad \ge \int _{\Omega }\lambda f(z,\underline{u}_{\lambda })(\underline{u}_{\lambda }-u_{\lambda })^{+}dz \\&\quad \ge \int _{\Omega }\lambda [c_{0}\underline{u}_{\lambda }^{\tau -1}-c_{2}\underline{u}_{\lambda }^{r-1}](\underline{u}_{\lambda }-u_{\lambda })^{+}\, dz\hbox { (see }(4)) \\&\quad =\langle A_{p}(\underline{u}_{\lambda }),(\underline{u}_{\lambda }-u_{\lambda })^{+}\rangle + \langle A_{q}(\underline{u}_{\lambda }),(\underline{u}_{\lambda }-u_{\lambda })^{+}\rangle \ \ \hbox { (see Proposition}~4) \\&\quad \Rightarrow \underline{u}_{\lambda } \le u_{\lambda }. \end{aligned}$$

So, we have proved that

$$\begin{aligned}&u_{\lambda }\in [\underline{u}_{\lambda },\overline{u}_{\lambda }] \quad \Rightarrow \quad u_{\lambda }\in S_{\lambda } \hbox { (see} (18) \hbox { and }(19)) \quad \Rightarrow \quad (0,\lambda _{0}]\subseteq \mathcal {L}\ne \varnothing . \end{aligned}$$

This completes the proof of the proposition. \(\square \)

Proposition 8

If hypotheses H hold and \(\lambda \in \mathcal {L}\), then \(\underline{u}_{\lambda }\le u\) for all \(u\in S_{\lambda }\) and \(S_{\lambda }\subseteq \mathrm {int}C_{+}\).

Proof

Let \(u\in S_{\lambda }\). Reasoning as in the last part of the proof of Proposition 5 (see the part of the proof from (11) and below), replacing \(\overline{u}_{\lambda }\) with u (see (11)), we show that \(\underline{u}_\lambda \le u\) for all \(u\in S_{\lambda }\). Finally, \(S_{\lambda }\subseteq \mathrm {int}C_{+}\) follows from [16] (Theorem B.1, regularity theory) and from [34] (pp. 111 and 120, nonlinear maximum principle). \(\square \)

Next, we prove a structural property of the set \(\mathcal {L}\), namely, we show that \(\mathcal {L}\) is an interval.

Proposition 9

If hypotheses H hold, \(\lambda \in \mathcal {L}\) and \(\mu \in (0,\lambda )\), then \(\mu \in \mathcal {L}\).

Proof

Since \(\lambda \in \mathcal {L}\), we can find \(u_{\lambda }\in S_{\lambda } \subseteq \mathrm {int}C_{+}\) (see Proposition 8). We consider the following Dirichlet problem

figure d

with \(0<\theta \le \lambda \) and \(1<\tau<q<p<r\). Reasoning as in the proof of Proposition 4, via the direct method of the calculus of variations, we show that for every \(\theta \in (0,\lambda ]\) problem \((H_{\theta })\) admits a unique solution \(\widetilde{u}_{\theta }\in \mathrm {int}C_{+}\) and also we have that \(\widetilde{u}^{-\eta }_{\theta }\in L^{1}(\Omega )\) (see [21]). In addition, if \(0<\theta _{1}<\theta _{2}\le \lambda \), then since \(\theta _{1}c_{0}x^{\tau -1}-\lambda c_{2}x^{r-1}\le \theta _{2}c_{0}x^{\tau -1} -\lambda c_{2}x^{r-1}\) for all \(x\ge 0\), we have that \(\widetilde{u}_{\theta _{1}}\le \widetilde{u}_{\theta _{2}}\). Note that \(\widetilde{u}_{\lambda }=\underline{u}_{\lambda }\in \mathrm {int}C_{+}\), we have

$$\begin{aligned} \widetilde{u}_{\mu }\le \underline{u}_{\lambda }\le u_{\lambda } \hbox { (see Proposition}~8). \end{aligned}$$

Therefore, we can define the following truncation of the reaction in problem \((P_{\mu })\)

$$\begin{aligned} \gamma _\mu (z,x)= \left\{ \begin{array}{lll} \mu [\widetilde{u}_{\mu }(z)^{-\eta }+f(z,\widetilde{u}_{\mu }(z))]&{}\hbox { if } x<\widetilde{u}_{\mu }(z), \\ \mu [x^{-\eta }+f(z,x)]&{}\hbox { if } \widetilde{u}_{\mu }(z)\le x \le u_{\lambda }(z), \\ \mu [u_{\lambda }(z)^{-\eta }+f(z,u_{\lambda }(z))]&{}\hbox { if }u_{\lambda }(z)<x. \end{array}\right. \end{aligned}$$
(20)

This is a Carathéodory function. We set \(\Gamma _{\mu }(z,x)=\int ^{x}_{0}\gamma _{\mu }(z,s)\,ds\) and consider the \(C^{1}\)-functional \( \Sigma _{p}:W^{1,p}_{0}(\Omega )\rightarrow \mathbb {R}\) defined by

$$\begin{aligned} \Sigma _{p}(u)=\frac{1}{p}\Vert Du\Vert ^{p}_{p}+\frac{1}{q}\Vert Du\Vert ^{q}_{q} -\int _{\Omega }\Gamma _{\mu }(z,u)\,dz \hbox { for all } u\in W^{1,p}_{0}(\Omega ). \end{aligned}$$

From (20), it is clear that \(\Sigma _{\mu }(\cdot )\) is coercive and sequentially weakly lower semicontinuous. So, we can find \(u_{\mu }\in W^{1,p}_{0}(\Omega )\) such that

$$\begin{aligned} \Sigma _{\mu }(u_{\mu })=\mathrm {min}\left[ \Sigma _{\mu }(u)\,\mid \,u\in W^{1,p}_{0}(\Omega )\right] \Rightarrow \Sigma _{\mu }'(u_{\mu })=0, \end{aligned}$$

that is,

$$\begin{aligned} \langle A_{p}(u_{\mu }),h \rangle + \langle A_{q}(u_{\mu }),h \rangle =\int _{\Omega }\gamma _{\mu }(z,u_{\mu })h\,dz\hbox { for all }h\in W^{1,p}_{0}(\Omega ). \end{aligned}$$
(21)

In (21), first, we choose \(h=(u_{\mu }-u_{\lambda })^{+}\in W^{1,p}_{0}(\Omega )\) to get

$$\begin{aligned}&\langle A_{p}(u_{\mu }),(u_{\mu }-u_{\lambda })^{+}\rangle + \langle A_{q}(u_{\mu }),(u_{\mu }-u_{\lambda })^{+}\rangle \\&\quad =\int _{\Omega }\mu [u_{\lambda }^{-\eta }+f(z,u_{\lambda })](u_{\mu }-u_{\lambda })^{+}\,dz \hbox { (see }(20)) \\&\quad \le \int _{\Omega }\lambda [u_{\lambda }^{-\eta }+f(z,u_{\lambda })](u_{\mu }-u_{\lambda })^{+}\,dz \hbox { (since}\ \mu <\lambda ) \\&\quad =\langle A_{p}(u_{\lambda }),(u_{\lambda }-u_{\mu })^{+}\rangle + \langle A_{q}(u_{\lambda }),(u_{\lambda }-u_{\mu })^{+}\rangle \\&\quad \Rightarrow u_{\mu }\le u_{\lambda }. \end{aligned}$$

Next, in (21), we take \(h=(\widetilde{u}_{\mu }-u_{\mu })^{+}\in W^{1,p}_{0}(\Omega )\) to find

$$\begin{aligned}&\langle A_{p}(u_{\mu }),(\widetilde{u}_{\mu }-u_{\mu })^{+}\rangle + \langle A_{q}(u_{\mu }),(\widetilde{u}_{\mu }-u_{\mu })^{+}\rangle \\&\quad =\int _{\Omega }\mu [\widetilde{u}^{-\eta }_{\mu }+f(z,\widetilde{u}_{\mu })](\widetilde{u}_{\mu }-u_{\mu })^{+}\,dz\hbox { (see }(20)) \\&\quad \ge \int _{\Omega } \mu f(z,\widetilde{u}_{\mu })(\widetilde{u}_{\mu }-u_{\mu })^{+}\,dz \\&\quad \ge \int _{\Omega } [\mu c_{0}\widetilde{u}^{\tau -1}_{\mu }-\mu c_{2}\widetilde{u}^{r-1}_{\mu }](\widetilde{u}_{\mu }-u_{\mu })^{+}\,dz \hbox { (see}(4)) \\&\quad \ge \int _{\Omega } [\mu c_{0}\widetilde{u}^{\tau -1}_{\mu }-\lambda c_{2}\widetilde{u}^{r-1}_{\mu }](\widetilde{u}_{\mu }-u_{\mu })^{+}\,dz \hbox { (since } \mu <\lambda ) \\&\quad =\langle A_{p}(\widetilde{u}_{\mu }),(\widetilde{u}_{\mu }-u_{\mu })^{+}\rangle + \langle A_{q}(\widetilde{u}_{\mu }),(\widetilde{u}_{\mu }-u_{\mu })^{+}\rangle \\&\qquad \,\hbox { (since }\widetilde{u}_{\mu }\in \mathrm {int}C_{+} \hbox { is the unique solution of }(H_{\mu })) \\&\quad \Rightarrow \widetilde{u}_{\mu }\le u_{\mu }. \end{aligned}$$

So, we have proved that

$$\begin{aligned} u_{\mu }\in [\widetilde{u}_{\mu },u_{\lambda }]\quad \Rightarrow \quad u_{\mu }\in S_{\mu } \subseteq \mathrm {int}C_{+}, \hbox { (see } (20), (21)) \hbox { and so } \mu \in \mathcal {L}. \end{aligned}$$

This completes the proof of the proposition. \(\square \)

Remark 10

The following observation is a byproduct of the above proof:

  • if \(\lambda \in \mathcal {L}, u_{\lambda }\in S_{\lambda }\subseteq \mathrm {int} C_{+}\) and \(0<\mu <\lambda \), then \(\mu \in \mathcal {L}\) and we can find \(u_{\mu }\in S_{\mu }\subseteq \mathrm {int}C_{+}\) such that

    $$\begin{aligned} u_{\mu }\le u_{\lambda }. \end{aligned}$$

However, in the next proposition, we improve the observation.

Proposition 11

If hypotheses H hold, \(\lambda \in \mathcal {L}, u_{\lambda }\in S_{\lambda }\subseteq \mathrm {int}C_{+}\) and \(\mu <\lambda \), then \(\mu \in \mathcal {L}\) and we can find \(u_{\mu }\in S_{\mu }\subseteq \mathrm {int} C_{+}\) such that

$$\begin{aligned} u_{\lambda }-u_{\mu }\subseteq \mathrm {int} C_{+}. \end{aligned}$$

Proof

From Proposition 9 and Remark 10, we know that \(\mu \in \mathcal {L}\) and we can find \(u_{\mu }\in S_{\mu }\subseteq \mathrm {int}C_{+}\) such that \(u_{\mu }\le u_{\lambda }\). Let \(\rho =\Vert u_{\lambda }\Vert _{\infty }\) and let \(\widehat{E}_{\rho }>0\) be as postulated by hypothesis H(v). We have

$$\begin{aligned}&-\Delta _{p}u_{\mu }(z)-\Delta _{q}u_\mu (z)+\lambda \widehat{E}_{\rho }u_{\mu }(z)^{p-1}-\lambda u_{\mu }(z)^{-\eta } \nonumber \\&\quad \le \mu f(z,u_{\mu }(z))+\lambda \widehat{E}_{\rho }u_{\mu }(z)^{p-1} \ \ \ \hbox { (since}\ u_{\mu }\in S_{\mu }\subseteq \mathrm {int}C_{+}) \nonumber \\&\quad = \lambda [f(z,u_{\mu }(z))+\widehat{E}_{\rho }u_{\mu }(z)^{p-1}]-(\lambda -\mu )f(z,u_{\mu }(z)) \nonumber \\&\quad \le \lambda [f(z,u_{\lambda }(z))+\widehat{E}_{\rho }u_{\lambda }(z)^{p-1}]\hbox { (recall }f\ge 0, \mu <\lambda \hbox { and see hypothesis }H(\hbox {v}))\nonumber \\&\quad =-\Delta _{p}u_{\lambda }(z)-\Delta _{q}u_{\lambda }(z)+\lambda \widehat{E}_{\rho }u_{\lambda }(z)^{p-1}-\lambda u_{\lambda }(z)^{-\eta }, \end{aligned}$$
(22)

due to \(u_{\lambda }\in S_{\lambda }\subseteq \mathrm {int}C_{+}\). On account of condition H(iv), we have

$$\begin{aligned} 0\prec (\lambda -\mu )f(\cdot ,u_{\mu }(\cdot )) \hbox { (recall } u_{\mu }\in \mathrm {int}C_{+}). \end{aligned}$$

Then, from (22) and Proposition 7 of Papageorgiou-Rǎdulescu-Repovš [29], we conclude that

$$\begin{aligned} u_{\lambda }-u_{\mu }\in \mathrm {int}C_{+}. \end{aligned}$$

This completes the proof of the proposition. \(\square \)

Let \(\lambda ^{*}=\text {sup}\mathcal {L}\). The following proposition reveals that \(\lambda ^*\) is finite.

Proposition 12

If hypotheses H hold, then \(\lambda ^{*}<+ \infty \).

Proof

On account of hypotheses H(i), (ii), (iii), we can find \(\widehat{\lambda }>0\) such that

$$\begin{aligned} x^{p-1}\le \widehat{\lambda }f(z,x) \ \hbox { for a.a}\ z\in \Omega , \ \hbox { all}\ x\ge 0. \end{aligned}$$
(23)

Let \(\lambda >\widehat{\lambda }\) and suppose that \(\lambda \in \mathcal {L}\). Then, we can find \(u_{\lambda }\in S_{\lambda }\subseteq \mathrm {int}C_{+}\). Consider \(\Omega _{0}\subset \subset \Omega \) with \(C^{2}\)-boundary \(\partial \Omega _{0}\). We set \(m_{0}=\mathrm {min}_{\overline{\Omega }_0}u_{\lambda }>0\), and for \(\delta \in (0,1)\) small we set \(m^{\delta }_{0}=m_{0}+\delta \). Let \(\rho =\Vert u_{\lambda }\Vert _{\infty }\) and let \(\widehat{E}_{\rho }>0\) be as postulated by hypothesis H(v). We have

$$\begin{aligned}&-\Delta _{p}m^{\delta }_{0}-\Delta _{q}m^{\delta }_{0}+\lambda \widehat{E}_{\rho }(m^{\delta }_{0})^{p-1} -\lambda (m^{\delta }_{0})^{-\eta } \\&\quad \le \lambda \widehat{E}_{\rho }m^{p-1}_{0}+\chi (\delta )\hbox { (with }\chi (\delta )\rightarrow 0^{+}\hbox { as } \delta \rightarrow 0^{+}) \\&\quad \le [\lambda \widehat{E}_{\rho }+1]m^{p-1}_{0}+ \chi (\delta ) \\&\quad \le \widehat{\lambda }f(z,m_{0})+\lambda \widehat{E}_{\rho }m^{p-1}_{0}+\chi (\delta ) \hbox { (see}(23)) \\&\quad =\lambda [f(z,m_{0})+\widehat{E}_{\rho }m^{p-1}_{0}]-(\lambda -\widehat{\lambda })f(z,m_{0})+\chi (\delta )\hbox { (since } \lambda >\widehat{\lambda }) \\&\le \lambda [f(z,u_{\lambda })+\widehat{E}_{\rho }u_{\lambda }^{p-1}] \hbox { for } \delta \in (0,1)\hbox { small enough}, \end{aligned}$$

where we have used the hypotheses H(iv), (v) and the fact, \(\chi (\delta )\rightarrow 0^{+}\) as \(\delta \rightarrow 0^{+}\), i.e., for \(\delta \in (0,1)\) small enough, it has

$$\begin{aligned} 0<c_7\le (\lambda -\widehat{\lambda })f(z,m_{0})-\chi (\delta ) \ \ \hbox { for a.a }\ \ z\in \Omega _{0}. \end{aligned}$$

Besides, it holds

$$\begin{aligned} \lambda [f(z,u_{\lambda })+\widehat{E}_{\rho }u_{\lambda }^{p-1}]= -\Delta _{p}u_{\lambda }-\Delta _{q}u_{\lambda }+\lambda \widehat{E}_{\rho }u_{\lambda }^{p-1}-\lambda u_{\lambda }^{-\eta }\ \ \hbox { for a.a}\ z\in \Omega _{0}. \end{aligned}$$
(24)

Then, from (24) and Proposition 6 of Papageorgiou-Rǎdulescu-Repovš [29], we have that

$$\begin{aligned} u_{\lambda }-m_{0}^{\delta }\in D_{+}(\Omega _{0}) \hbox { for } \delta \in (0,1) \hbox { small enough}, \end{aligned}$$

which contradicts with the definition of \( m_{0}\). Consequently, it holds \(0<\lambda ^{*} \le \widehat{\lambda }<\infty \). \(\square \)

Therefore we have

$$\begin{aligned} (0,\lambda ^{*})\subseteq \mathcal {L}\subseteq (0,\lambda ^{*}]. \end{aligned}$$
(25)

Proposition 13

If hypotheses H hold and \(\lambda \in (0,\lambda ^{*})\), then problem \((P_{\lambda })\) has least two positive solutions

$$\begin{aligned} u_{0},\hat{u}\in \mathrm {int}C_{+}\hbox { with } u_{0}\le \hat{u}\hbox { and } u_{0}\ne \hat{u}. \end{aligned}$$

Proof

Let \(0<\lambda<\theta <\lambda ^{*}\). From (25), we have that \(\lambda , \theta \in \mathcal {L}\). On account of Proposition 11, we can find \(u_{0}\in S_{\lambda }\subseteq \mathrm {int}C_{+}\) and \(u_{\theta }\in S_{\theta }\subseteq \mathrm {int}C_{+}\) such that

$$\begin{aligned} u_{\theta }-u_{0}\in \mathrm {int}C_{+}. \end{aligned}$$
(26)

From Proposition 8, we know that \(\underline{u}_{\lambda }\le u_{0}\), hence \(u_{0}^{-\eta }\in L^{1}(\Omega )\). Additionally, we introduce the Carathéodory function \(\widehat{w}_{\lambda }(z,x)\) defined by

$$\begin{aligned} \widehat{w}_{\lambda }(z,x)= \left\{ \begin{array}{lll} \lambda [u_{0}(z)^{-\eta }+f(z,u_{0}(z))]&{}\hbox { if } x<u_{0}(z), \\ \lambda [x^{-\eta }+f(z,x)]&{}\hbox { if } u_{0}(z)\le x< u_{\theta }(z), \\ \lambda [u^{-\eta }_{\theta }+f(z,u_{\theta }(z))] &{}\hbox { if } u_{\theta }(z)\le x. \end{array}\right. \end{aligned}$$
(27)

We set \(\widehat{W}_{\lambda }(z,x)=\int ^{x}_{0}\widehat{w}_{\lambda }(z,s)\,ds\) and consider the \(C^{1}\)-functional \(\widehat{\mu }_{\lambda }:W^{1,p}_{0}(\Omega )\rightarrow \mathbb {R}\) defined by

$$\begin{aligned} \widehat{\mu }_{\lambda }(u)=\frac{1}{p}\Vert Du\Vert ^{p}_{p}+\frac{1}{q}\Vert Du\Vert ^{q}_{q} -\int _{\Omega }\widehat{W}_{\lambda }(z,u)\,dz \hbox { for all }u\in W^{1,p}_{0}(\Omega ). \end{aligned}$$

In addition, we introduce another Carathéodory function \(w_{\lambda }(z,x)\) defined by

$$\begin{aligned} w_{\lambda }(z,x)= \left\{ \begin{array}{lll} \lambda [u_{0}(z)^{-\eta }+f(z,u_{0}(z))]&{}\hbox { if } x\le u_{0}(z), \\ \lambda [x^{-\eta }+f(z,x)]&{}\hbox { if }u_{0}(z)<x. \end{array}\right. \end{aligned}$$
(28)

We set \(W_{\lambda }(z,x)=\int ^{x}_{0}w_{\lambda }(z,s)\,ds\) and consider the \(C^{1}\)-functional \(\mu _{\lambda }:W^{1,p}_{0}(\Omega )\rightarrow \mathbb {R}\) defined by

$$\begin{aligned} \mu _{\lambda }(u)=\frac{1}{p}\Vert Du\Vert ^{p}_{p}+\frac{1}{q}\Vert Du\Vert ^{q}_{q} -\int _{\Omega }W_{\lambda }(z,u)\,dz \hbox { for all } u\in W^{1,p}_{0}(\Omega ). \end{aligned}$$

It is clear from (27) and (28) that

$$\begin{aligned} \widehat{\mu }_{\lambda }(u)\big |_{[0,u_{\theta }]}=\mu _{\lambda }(u)\big |_{[0,u_{\theta }]} \hbox { and }\widehat{\mu }_{\lambda }'(u)\big |_{[0,u_{\theta }]}=\mu _{\lambda }'(u)\big |_{[0,u_{\theta }]}. \end{aligned}$$
(29)

Moreover, using (27), (28) and the nonlinear regularity theory, we can show that

$$\begin{aligned}&K_{\widehat{\mu }_{\lambda }}\subseteq [u_{0},u_{\theta }]\cap \mathrm {int}C_{+} \end{aligned}$$
(30)
$$\begin{aligned}&K_{\mu _{\lambda }}\subseteq [u_{0})\cap \mathrm {int}C_{+}. \end{aligned}$$
(31)

From (31), it is clear that we can assume that

$$\begin{aligned} K_{\mu _{\lambda }} \hbox { is finite}. \end{aligned}$$
(32)

Otherwise, we already have an infinity of positive smooth solutions of \((P_{\lambda })\) bigger than \(u_{0}\) (see (31) and (28)) and so we are done. In addition, we can also assume that

$$\begin{aligned} K_{\mu _{\lambda }}\cap [u_{0},u_{\theta }]=\{u_{0}\}. \end{aligned}$$
(33)

Otherwise, from (31) and (28), we see that there is a second positive smooth solution bigger than \(u_{0}\) and so we are done. From (27), it is clear that \(\widehat{\mu }_{\lambda }(\cdot )\) is coercive. Also, it is sequentially weakly lower semicontinuous. So, there exists \(\tilde{u}_{0}\in W^{1,p}_{0}(\Omega )\) such that

$$\begin{aligned}&\widehat{\mu }_{\lambda }(\tilde{u}_{0})=\mathrm {min}\left[ \widehat{\mu }_{\lambda }(u)\,\mid \,u\in W^{1,p}_{0}(\Omega )\right] \\&\quad \Rightarrow \tilde{u}_{0}\in K_{\widehat{\mu }_{\lambda }}\subseteq [u_{0},u_{\theta }]\cap \mathrm {int}C_{+} \ \ \hbox { (see}(30)), \\&\quad \Rightarrow \tilde{u}_{0}=u_{0} \ \ \hbox { (see } (29) \hbox { and }(30)). \end{aligned}$$

Then, (26) and (29) imply that

$$\begin{aligned}&u_{0}\in \mathrm {int}C_{+}\hbox { is a local }C^{1}_{0}(\overline{\Omega })-\hbox {minimizer of } \mu _{\lambda }(\cdot ),\nonumber \\&\quad \Rightarrow u_{0}\in \mathrm {int}C_{+} \hbox { is a local } W^{1,p}_{0}(\Omega )-\hbox {minimizer of } \mu _{\lambda }(\cdot ), \end{aligned}$$
(34)

where we have used Proposition 2.12 of Papageorgiou-Rǎdulescu [26]. From (34), (30) and Theorem 5.7.6, p.449, of Papageorgiou-Rǎdulescu-Repoveš [28], we are able to find \(\rho \in (0,1)\) small such that

$$\begin{aligned} \mu _{\lambda }(u_{0})<\mathrm {inf}\left[ \mu _{\lambda }(u)\,\mid \,\Vert u-u_{0}\Vert =\rho \right] =m_{\lambda }. \end{aligned}$$
(35)

If \(u\in \mathrm {int}C_{+}\), then on account of hypothesis H(ii) we have

$$\begin{aligned} \mu _{\lambda }(tu)\rightarrow -\infty \hbox { as } t\rightarrow +\infty . \end{aligned}$$
(36)

Claim. The function \(\mu _{\lambda }(\cdot )\) satisfies the C-condition.

We consider a sequence \(\{u_{n}\}_{n\ge 1}\subseteq W^{1,p}_{0}(\Omega )\) such that

$$\begin{aligned}&|\mu _{\lambda }(u_{n})| \le c_{7}\hbox { for some }c_{7}>0,\hbox { all }n\in \mathbb {N},\end{aligned}$$
(37)
$$\begin{aligned}&(1+\Vert u_{n}\Vert )\mu _{\lambda }'(u_{u})\rightarrow 0\hbox { in } W^{-1,p'}(\Omega )=W^{1,p}_{0}(\Omega )^*\hbox { as } n\rightarrow \infty . \end{aligned}$$
(38)

From (38), we have

$$\begin{aligned} \left| \langle A_{p}(u_{n}),h\rangle +\langle A_{q}(u_{n}),h\rangle -\int _{\Omega }w_{\lambda }(z,u_{n})h\,dz\right| \le \frac{\varepsilon _{n}\Vert h\Vert }{1+\Vert u_{n}\Vert } \end{aligned}$$
(39)

for all \(h\in W^{1,p}_{0}(\Omega )\) with \(\varepsilon _{n}\rightarrow 0^{+}\) as \(n\rightarrow +\infty \). In (39), we choose \(h=-u^{-}_{n}\in W^{1,p}_{0}(\Omega )\) to get

$$\begin{aligned}&\Vert Du^{-}_{n}\Vert ^{p}_{p}+\Vert Du^{-}_{n}\Vert ^{q}_{q}\le c_{8} \hbox { for some }c_{8}>0,\hbox { all } n\in \mathbb {N} \nonumber \\&\quad \Rightarrow \{u_{n}^{-}\}_{n\ge 1}\subseteq W^{1,p}_{0}(\Omega )\hbox { is bounded}. \end{aligned}$$
(40)

Next, in (39), we take \(h=u^{+}_{n}\in W^{1,p}_{0}(\Omega )\) to yield

$$\begin{aligned} -\Vert Du^{+}_{n}\Vert ^{p}_{p}-\Vert Du^{+}_{n}\Vert ^{q}_{q}+ \int _{\Omega }\lambda [(u^{+}_{n})^{-\eta }+f(z,u^{+}_{n})]u^{+}_{n}\,dz\le c_{9} \end{aligned}$$
(41)

for some \(c_{9}>0\), all \(n\in \mathbb {N}\) (see(31)) and recall that \(u^{-\eta }_{0}\in L^{1}(\Omega )\). By virtue of (37), (40) and (28), we have

$$\begin{aligned} \Vert Du^{+}_{n}\Vert ^{p}_{p}+\frac{p}{q}\Vert Du^{+}_{n}\Vert ^{q}_{q} -\int _{\Omega }\lambda \left[ \frac{p}{1-\eta }(u^{+}_{n})^{1-\eta }+pF(z,u^{+}_{n})\right] \,dz\le c_{10} \end{aligned}$$
(42)

for some \(c_{10}>0\), all \(n\in \mathbb {N}\). Note that \(q<p\), we add (41) and (42) to find

$$\begin{aligned} \int _{\Omega }\lambda e(z,u^{+}_{n})\,dz\le c_{11} \end{aligned}$$
(43)

for some \(c_{11}>0\), all \(n\in \mathbb {N}\) (see hypothesis H(iii)).

Suppose that \(\{u^{+}_{n}\}_{n\ge 1}\subseteq W^{1,p}_{0}(\Omega )\) is not bounded. We may assume that

$$\begin{aligned} \Vert u^{+}_{n}\Vert \rightarrow \infty \hbox { as }n\rightarrow \infty . \end{aligned}$$
(44)

We set \(y_{n}=\frac{u^{+}_{n}}{\Vert u^{+}_{n}\Vert }\), \(n\in \mathbb {N}\). This means that \(\Vert y_{n}\Vert =1\), and \(y_{n}\ge 0\) for all \(n\in \mathbb {N}\). We may assume that

$$\begin{aligned} y_{n} \ {\mathop {\longrightarrow }\limits ^{w}} \ y \hbox { in } W^{1,p}_{0}(\Omega ) \hbox { and } y_{n}\rightarrow y \hbox { in } L^{r}(\Omega )\hbox { with }y\ge 0. \end{aligned}$$
(45)

First, we assume that \(y\not \equiv 0\). Let \(\Omega _{+}=\{z\in \Omega \,\mid \,y(z)>0\}\). Then, \(|\Omega _{+}|_{N}>0\), (by \(|\cdot |_{N}\) we denote the Lebesgue measure on \(\mathbb {R}^{N}\)), and we have

$$\begin{aligned}&u^{+}_{n}(z)\rightarrow +\infty \hbox { for a.a } z\in \Omega _{+}, \hbox { as } n\rightarrow \infty \nonumber \\&\quad \Rightarrow \frac{F(z,u^{+}_{n}(z))}{\Vert u^{+}_{n}\Vert ^{p}}= \frac{F(z,u^{+}_{n}(z))}{u^{+}_{n}(z)^{p}}y_{n}(z)^{p}\rightarrow +\infty \hbox { for a.a } z\in \Omega _{+} (\hbox { see }H\hbox {(ii))} \nonumber \\&\quad \Rightarrow \int _{\Omega _{+}}\frac{F(z,u^{+}_{n})}{\Vert u^{+}_{n}\Vert ^{p}}\,dz \rightarrow +\infty \hbox { (by Fatou's lemma)},\nonumber \\&\quad \Rightarrow \int _{\Omega }\frac{F(z,u_{n}^+)}{\Vert u^{+}_{n}\Vert ^{p}}\,dz \rightarrow +\infty \hbox { (since}\ F\ge 0). \end{aligned}$$
(46)

From (37), (40) and (28), we have for each \(n\in \mathbb {N}\)

$$\begin{aligned}&\int _{\Omega }\lambda \frac{F(z,u^{+}_{n})}{\Vert u^{+}_{n}\Vert ^{p}}dz \le \frac{1}{p}\Vert Dy_{n}\Vert ^{p}_{p}+\frac{1}{q}\frac{1}{\Vert u^{+}_{n}\Vert ^{p-q}}\Vert Dy_{n}\Vert ^{q}_{q}+c_{13} \hbox { for some }c_{13}>0,\nonumber \\&\quad \Rightarrow \lambda \int _{\Omega }\frac{F(z,u^{+}_{n})}{\Vert u^{+}_{n}\Vert ^{p}}dz\le c_{14} \hbox { for some } c_{14}>0. \end{aligned}$$
(47)

Comparing (46) and (47), we have a contradiction.

Next, we assume that \(y\equiv 0\). Let \(k>0\) and set \(v_{n}=(pk)^{1/p}y_{n}, n\in \mathbb {N}\). Then, we have

$$\begin{aligned} v_{n}\rightarrow 0 \hbox { in } L^{r}(\Omega ) \hbox { (see } (45)) \Rightarrow \int _{\Omega } F(z,v_{n})\,dz\rightarrow 0 \hbox { as } n\rightarrow \infty . \end{aligned}$$
(48)

Consider the \(C^{1}\)-functional \(\tilde{\mu }_{\lambda }:W^{1,p}_{0}(\Omega )\rightarrow \mathbb {R}\) defined by

$$\begin{aligned} \tilde{\mu }_{\lambda }(u)=\frac{1}{p}\Vert Du\Vert ^{p}_{p} -\int _{\Omega }W_{\lambda }(z,u)\,dz \hbox { for all } u\in W^{1,p}_{0}(\Omega ). \end{aligned}$$

It is not difficult to prove that

$$\begin{aligned} \tilde{\mu }_{\lambda }(u)\le \mu _{\lambda }(u)\hbox { for all } u\in W_0^{1,p}(\Omega ). \end{aligned}$$
(49)

For each \(n\in \mathbb {N}\), let \(t_{n}\in [0,1]\) be such that

$$\begin{aligned} \tilde{\mu }_{\lambda }(t_{n}u_{n}^{+})=\mathrm {max}\left[ \tilde{\mu }_{\lambda }(tu_{n}^{+})\,\mid \,0\le t \le 1\right] . \end{aligned}$$
(50)

From (44), we can find \(n_{0}\in \mathbb {N}\) such that

$$\begin{aligned} 0<\frac{(p k)^{\frac{1}{p}}}{\Vert u^{+}_{n}\Vert }\le 1 \hbox { for all } n\ge n_{0}. \end{aligned}$$
(51)

Then for \(n\ge n_{0}\), from (50) and (51), we can find a constant \(c_{15}>0\) satisfying

$$\begin{aligned}&\tilde{\mu }_{\lambda }(t_{n}u_{n}^{+}) \ge \tilde{\mu }_{\lambda }(v_{n})\\&\quad =k-\int _{\Omega } \lambda F(z,v_{n})dz-\lambda (pk)^{\frac{1-\eta }{p}}c_{15}\hbox { (recall } \Vert y_{n}\Vert =1)\\&\quad =\left[ 1-\frac{\lambda p}{(pk)^{\frac{p+\eta -1}{p}}}c_{15}\right] k- \int _{\Omega } \lambda F(z,v_{n})\,dz. \end{aligned}$$

Also, we can take \(k_{0}> 0\) such that

$$\begin{aligned} 1>\frac{\lambda p}{(pk)^{\frac{p+\eta -1}{p}}} \hbox { for all }k>k_{0}. \end{aligned}$$

So, from (48), it has

$$\begin{aligned} \tilde{\mu }_{\lambda }(t_{n}u_{n}^{+})\ge c_{16}k \end{aligned}$$

for some \(c_{16}>0\), all \(k>k_{0}\), i.e.,

$$\begin{aligned} \tilde{\mu }_{\lambda }(t_{n}u_{n}^{+})\rightarrow +\infty \hbox { as } n\rightarrow \infty . \end{aligned}$$
(52)

However, (37), (40) and (49) point out

$$\begin{aligned} \tilde{u}_{\lambda }(0)=0 \ \ \hbox { and}\ \ \tilde{u}_{\lambda }(u_{n}^{+})\le c_{17}\hbox { for some }c_{17}>0, \hbox { all }n\in \mathbb {N}. \end{aligned}$$
(53)

From (52) and (53), it follows that

$$\begin{aligned} t_{n}\in (0,1) \hbox { for all } n\ge n_{2}. \end{aligned}$$
(54)

Then, from (54) and (50), we have

$$\begin{aligned}&0=t_{n}\frac{d}{dt}\tilde{\mu }_{\lambda }(tu_{n})|_{t=t_{n}} =\langle \tilde{\mu }'_{\lambda }(t_{n}u_{n}^{+}),t_{n}u_{n}^{+}\rangle \hbox { (by the chain rule)} \\&\quad =\Vert D(t_{n}u^{+}_{n})\Vert ^{p}_{p}-\int _{\Omega }w_{\lambda }(z,t_{n}u_{n}^{+})(t_{n}u_{n}^{+})\,dz\hbox { for all } n\ge n_{2}. \end{aligned}$$

This means that

$$\begin{aligned}&\Vert D(t_{n}u^{+}_{n})\Vert ^{p}_{p}=\int _{\Omega }w_{\lambda }(z,t_{n}u_{n}^{+})(t_{n}u_{n}^{+})\,dz \\&\le \int _{\Omega }\lambda [(t_{n}u^{+}_{n})^{1-\eta }+f(z,t_{n}u^{+}_{n})t_{n}u^{+}_{n}]\,dz+c_{18} \hbox { for some }c_{18}>0\hbox { (see }(28)) \\&\quad =\int _{\Omega } \lambda \left[ e(z,t_{n}u^{+}_{n}) -p\left( \frac{1}{1-\eta }(t_{n}u^{+}_{n})^{1-\eta }+F(z,t_{n}u^{+}_{n})\right) \right] \,dz+c_{18} \\&\quad \le \int _{\Omega } \lambda \left[ e(z, u^{+}_{n}) -p\left( \frac{1}{1-\eta }(t_{n}u^{+}_{n})^{1-\eta }+F(z,t_{n}u^{+}_{n})\right) \right] \,dz+c_{19} \end{aligned}$$

for all \(n\ge n_2\) with some \(c_{19}>0\), where we have used (54) and hypothesis H(iii). So, we have

$$\begin{aligned} \tilde{\mu }_{\lambda }(t_{n}u^{+}_{n})\le c_{20} \hbox { for some }c_{20}>0,\hbox { all }n\ge n_{2} \hbox { (see }(28) \hbox { and } (43)). \end{aligned}$$
(55)

We compare (55) and (52) to have a contradiction. This proves that

$$\begin{aligned} \{u^{+}_{n}\}_{n\ge 1}\subseteq W^{1,p}_{0}(\Omega ) \hbox { is bounded}\quad \Rightarrow \quad \{u_{n}\}_{n\ge 1}\subseteq W^{1,p}_{0}(\Omega ) \hbox { is bounded (see}(40)). \end{aligned}$$

So, we may assume that

$$\begin{aligned} u_{n} \ {\mathop {\longrightarrow }\limits ^{w}} \ u \hbox { in } W^{1,p}_{0}(\Omega ) \hbox { and } u_{n}\rightarrow u\in L^{r}(\Omega ). \end{aligned}$$
(56)

In (39), we choose \(h=u_{n}-u\in W^{1,p}_{0}(\Omega )\), pass to the limit as \( n\rightarrow \infty \), and use (56) to obtain

$$\begin{aligned}&\lim \limits _{n\rightarrow \infty }[\langle A_{p}(u_{n}),u_{n}-u\rangle +\langle A_{q}(u_{n}),u_{n}-u\rangle ]=0, \\&\quad \Rightarrow \limsup \limits _{n\rightarrow \infty }[\langle A_{p}(u_{n}),u_{n}-u\rangle +\langle A_{q}(u),u_{n}-u\rangle ] \le 0, \\&\quad \Rightarrow \limsup \limits _{n\rightarrow \infty }\langle A_{p}(u_{n}),u_{n}-u\rangle \le 0 \hbox { (see }(56)), \\&\quad \Rightarrow u_{n}\rightarrow u \ \ \hbox { in}\ \ W^{1,p}_{0}(\Omega ) \hbox { (see Proposition}~1). \end{aligned}$$

Therefore \(\mu _{\lambda }(\cdot )\) satisfies the C-condition. This proves the claim.

Then, (35), (36) and the claim, permit the use of the mountain pass theorem. So, we can find \(\hat{u}\in W^{1,p}_{0}(\Omega )\) such that

$$\begin{aligned} \hat{u}\in K_{\mu _{\lambda }}\subseteq [u_{0})\cap \mathrm {int}C_{+} \hbox { (see }(34)),\quad m_{\lambda }\le \mu _{\lambda }(\hat{u}) \hbox { (see }(35)). \end{aligned}$$
(57)

From (57), (28) and (35), we infer that \(\hat{u}\in S_{\lambda }, u_{0}\le \hat{u}\) and \(\hat{u}\ne u_{0}\). \(\square \)

Moreover, we check the admissibility of the critical parameter value \(\lambda ^{*}\).

Proposition 14

If hypotheses H hold, then \(\lambda ^{*}\in \mathcal {L}\).

Proof

Let \(\{\lambda _{n}\}\subset (0,\lambda ^{*})\) be such that \(\lambda _{n}\uparrow \lambda ^{*}\). We have \(\{\lambda _{n}\}_{n\ge 1}\subseteq \mathcal {L}\) (see Proposition 11). From the proof of Proposition 13 and keeping the notation introduced there, we are able to find \(u_{n}\in S_{\lambda _{n}}\subseteq \mathrm {int}C_{+}\) such that

$$\begin{aligned}&\mu _{\lambda _{n}}(u_{n}) =\frac{1}{p}\Vert Du_n\Vert ^{p}_{p} +\frac{1}{q}\Vert Du_n\Vert ^{q}_{q}-\lambda _{n}\int _{\Omega }[u_{n}^{1-\eta }+f(z,u_{n})u_{n}]\,dz \hbox { (see }(31)) \nonumber \\&\quad =\frac{1}{p}\Vert Du_{n}\Vert ^{p}_{p}+\frac{1}{q}\Vert Du_{n}\Vert ^{q}_{q} -\Vert Du_{n}\Vert ^{p}_{p}-\Vert Du_{n}\Vert ^{q}_{q}\hbox { (since }u_n\in S_{\lambda _n}) \nonumber \\&\quad =\left[ \frac{1}{p}-1\right] \Vert Du_{n}\Vert ^{p}_{p}+\left[ \frac{1}{q}-1\right] \Vert Du_{n}\Vert ^{q}_{q} <0\hbox { for all } n\in \mathbb {N}. \end{aligned}$$
(58)

Recall that \(u_{n}\in S_{\lambda _{n}}\subseteq \mathrm {int}C_{+}, n\in N\). So, we have

$$\begin{aligned} \langle A_{p}(u_{n}),h\rangle +\langle A_{q}(u_{n}),h\rangle =\int _{\Omega }[\lambda _{n}u_{n}^{-\eta }h+f(z,u_{n})h]\,dz \end{aligned}$$
(59)

for all \(h\in W^{1,p}_{0}(\Omega )\), all \(n\in \mathbb {N}\). From (58), (59) and reasoning as in the Claim in the proof of Proposition 13, we obtain that at least for a subsequence, we have

$$\begin{aligned} u_{n}\rightarrow u_{*} \hbox { in }W^{1,p}_{0}(\Omega ) \hbox { as }n\rightarrow \infty . \end{aligned}$$
(60)

We know that \(\tilde{u}_{\lambda _{1}}\le u_{n}\) for all \(n\in \mathbb {N}\) (see the proof of Proposition 11). Therefore, from (60), we see that \(u_{*}\ne 0\) and \(u_{*}^{-\eta }h\le \tilde{u}_{\lambda _{1}}^{-\eta }h \in L^1(\Omega )\) for all \(h\in W^{1,p}_{0}(\Omega )\). In (59), we pass to the limit as \(n\rightarrow \infty \) and use (60) to admit

$$\begin{aligned}&\langle A_{p}(u_{*}),h\rangle +\langle A_{q}(u_{*}),h\rangle =\int _{\Omega } \lambda ^{*}[u^{-\eta }_{*}+f(z,u_{*})]hdz \hbox { for all } h\in W^{1,p}_{0}(\Omega ) \\&\quad \Rightarrow u_{*}\in S_{\lambda _{*}}\subseteq \mathrm {int}C_{+} \hbox { and so } \lambda ^{*}\in \mathcal {L}. \end{aligned}$$

This completes the proof of the proposition. \(\square \)

We have proved that

$$\begin{aligned} \mathcal {L}=(0,\lambda ^{*}]. \end{aligned}$$

So, summarizing our findings in this section, we can state the following bifurcation-type theorem.

Theorem 15

If hypotheses H hold, then there exists \(\lambda ^{*}>0\) such that

  1. (a)

    for every \(\lambda \in (0,\lambda ^{*})\), problem \((P_{\lambda })\) has at least two positive solutions \(u_{0}, \hat{u}\in \mathrm {int}C_{+}\) with \(u_{0}\le \hat{u}\) and \(u_{0} \ne \hat{u}\);

  2. (b)

    for \(\lambda =\lambda ^{*}\), problem \((P_{\lambda })\) has at least one positive solution \(u_{*}\in \mathrm {int}C_{+}\);

  3. (c)

    for every \(\lambda >\lambda ^{*}\), problem \((P_{\lambda })\) has no positive solutions.

In the next section, we produce minimal positive solution and study the properties of the corresponding minimal positive solution map.

4 Minimal positive solutions

In this section, we show that for every \(\lambda \in \mathcal {L}\) problem \((P_{\lambda })\) has a minimal positive solution \(u^{*}_{\lambda }\in \mathrm {int} C_{+}\) (that is, \(u^{*}_{\lambda }\le u\) for all \(u\in S_{\lambda }\)) and also examine the monotonicity and continuity properties of the map \(\lambda \mapsto u^{*}_{\lambda }\).

Proposition 16

If hypotheses H hold and \(\lambda \in \mathcal {L}=(0,\lambda ^{*}]\), then problem \((P_{\lambda })\) admits a smallest positive solution \(u^{*}\in S_{\lambda }\subseteq \mathrm {int}C_{+}\), that is, \(u^{*}_{\lambda }\le u\) for all \(u\in S_{\lambda }\).

Proof

From Proposition 19 of Papagetorgiou-Rǎdulescu-Repovš [29], we know that \(S_{\lambda }\) is downward directed. Then, invoking Lemma 3.10, p. 178, of Hu-Papageorgiou [19], we can find a decreasing sequence \(\{u_{n}\}_{n\ge 1}\subseteq S_{\lambda }\) such that

$$\begin{aligned} \inf \limits _{n\ge 1} u_{n}=\inf S_{\lambda }. \end{aligned}$$

From Proposition 5, we know that \(\underline{u}_{\lambda }\le u_{n}\) for all \( n\ge 1 \) and \(\underline{u}_\lambda ^{-\eta }\in L^1(\Omega )\) (see \(\underline{u}_{\lambda }\in \mathrm {int}C_{+}\)). Therefore, we have

$$\begin{aligned}&\langle A_{p}(u_{n}),h\rangle +\langle A_{q}(u_{n}),h\rangle = \lambda _{n}\int _{\Omega }[u^{-\eta }_{n}+f(z,u_{n})]h\,dz \hbox { for all } h\in W^{1,p}_{0}(\Omega ), \end{aligned}$$
(61)
$$\begin{aligned}&\underline{u}\le u_{n}\le u_{1} \end{aligned}$$
(62)

for all \(n\in \mathbb {N}\). Choosing \(h=u_{n}\in W^{1,p}_{0}(\Omega )\) in (61) and using (62) and hypothesis H(i), we see that

$$\begin{aligned} \{u_{n}\}_{n\ge 1}\subseteq W^{1,p}_{0}(\Omega ) \hbox { is bounded}. \end{aligned}$$

So, using the monotonicity of the sequence \(\{u_{n}\}_{n\ge 1}\) and the \((S)_{+}\)-property of \(A_{p}(\cdot )\) (see Proposition 1), as in the proof of Proposition 13 (see the Claim), we obtain

$$\begin{aligned} u_{n}\rightarrow u^{*}_{\lambda } \hbox { in } W^{1,p}_{0}(\Omega ). \end{aligned}$$
(63)

Then, passing to the limit as \(n\rightarrow \infty \) in (61) and using (63) and (62), we conclude that

$$\begin{aligned} u^{*}_{\lambda } \in S_{\lambda } \subseteq \mathrm {int}C_{+},\ u^{*}_{\lambda }=\mathrm {inf}S_{\lambda }. \end{aligned}$$

This completes the proof of the proposition. \(\square \)

Next we examine the properties of the map \(\mathcal {L}\ni \lambda \mapsto u^{*}_{\lambda }\in \mathrm {int}C_{+}\subseteq C^{1}_{0}(\overline{\Omega })\).

Proposition 17

If hypotheses H hold, then the minimal positive solution map \(\lambda \mapsto u^{*}_{\lambda }\) from \(\mathcal {L}=(0,\lambda ^{*}]\) into \(C^{1}_{0}(\overline{\Omega })\) is

  1. (a)

    strictly increasing, that is,

    $$\begin{aligned} 0<\mu <\lambda \le \lambda ^{*}\Rightarrow u^{*}_{\lambda }-u^{*}_{\mu }\in \mathrm {int}C_{+}; \end{aligned}$$
  2. (b)

    left continuous.

Proof

(a) From Proposition 11, we can find \(u_{\mu }\in S_{\mu }\subseteq \mathrm {int}C_{+}\) such that

$$\begin{aligned} u^{*}_{\lambda }-u_{\mu }\in \mathrm {int}C_{+}\quad \Rightarrow \quad u^{*}_{\lambda }-u^{*}_{\mu }\in \mathrm {int}C_{+}\hbox { (since } u^{*}_{\mu }\le u_{\mu }). \end{aligned}$$

(b) Suppose \(\lambda _{n}\rightarrow \lambda ^{-}\le \lambda ^{*}\) as \(n\rightarrow \infty \). Then, from Proposition 8 and assertion (a), we have

$$\begin{aligned} \underline{u}_{\lambda _{1}}\le u^{*}_{\lambda _{n}}\le u^{*}_{\lambda ^{*}} \in \mathrm {int}C_{+}\quad \Rightarrow \quad \{u^{*}_{\lambda _{n}}\}_{n\ge 1}\subseteq W^{1,p}_{0}(\Omega ) \hbox { is bounded}. \end{aligned}$$

Then, the nonlinear regularity theory of Lieberman [22] implies that there exist \(\alpha \in (0,1)\) and \(c_{21}>0\) such that

$$\begin{aligned} u^{*}_{\lambda _n}\in C^{1,\alpha }_{0}(\overline{\Omega })=C^{1,\overline{\alpha }}(\Omega )\cap C^{1}_{0}(\overline{\Omega })\hbox { and } \Vert u^{*}_{\lambda _{n}}\Vert _{C^{1,\alpha }_{0}(\overline{\Omega })}\le c_{21} \hbox { for all } n\in \mathbb {N}. \end{aligned}$$

The compact embedding of \(C^{1,\alpha }_{0}(\overline{\Omega })\) into \(C^{1}_{0}(\overline{\Omega })\) and the monotonicity of \(\{u^{*}_{\lambda _{n}}\}_{n\ge 1}\) (see part (a)) imply that

$$\begin{aligned} u^{*}_{\lambda _{n}}\rightarrow \tilde{u}^{*}_{\lambda } \hbox { in } C^{1}_{0}(\overline{\Omega }). \end{aligned}$$
(64)

Suppose that \(\tilde{u}^{*}_{\lambda }\ne u^{*}_{\lambda }\). Then, we can find \(z_{0}\in \Omega \) such that

$$\begin{aligned} u^{*}_{\lambda }(z_{0})<\tilde{u}^{*}_{\lambda }(z_{0})\quad \Rightarrow \quad u^{*}_{\lambda }(z_{0})< u^{*}_{\lambda _{n}}(z_{0}) \hbox { for all } n\ge n_{0} \hbox { (see }(64)) \end{aligned}$$

and this contradicts with part (a). Therefore, \(\tilde{u}^{*}_{\lambda }=u^{*}_{\lambda }\), so, \(\lambda \mapsto u^{*}_{\lambda }\) is left continuous. \(\square \)

Summarizing, we can state the following theorem about minimal positive solutions for problem \((P_{\lambda })\).

Theorem 18

If hypotheses H hold and \(\lambda \in \mathcal {L}=(0, \lambda ^{*}]\), then problem \((P_{\lambda })\) has a smallest positive solution \(u^{*}_{\lambda }\in S_{\lambda }\subseteq \mathrm {int}C_{+}\) and the map \(\lambda \mapsto u^{*}_{\lambda }\) from \(\mathcal {L}=(0,\lambda ^{*}]\) into \(C^{1}_{0}(\overline{\Omega })\) is strictly increasing and left continuous.