Skip to main content
Log in

Existence and Asymptotic Behavior of Localized Nodal Solutions for a Class of Kirchhoff-Type Equations

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we study the existence and asymptotic behavior of localized nodal solutions for the following Kirchhoff-type equation

$$\begin{aligned} -\left( \varepsilon ^2a+\varepsilon b\int _{\mathbb {R}^3}|\nabla u|^2dx\right) \Delta u+V(x)u=|u|^{p-2}u, \ x \in \mathbb {R}^3, \end{aligned}$$

where \(a>0\), \(b>0\) and \(4<p<6\). Under only a local condition that V has a local trapping potential well, when \(\varepsilon >0\) is sufficiently small, we construct the existence of a sequence of localized nodal solutions concentrating around the local minimum points of the potential function V by using variational method and penalization approach. Moreover, we regard b as a parameter and study the asymptotic behavior of the nodal solutions as \(b\searrow 0\), which reflects some relationship between \(b>0\) and \(b=0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C., Soares, S.H.M.: On the location and profile of spike-layer nodal solutions to nonlinear Schrödinger equations. J. Math. Anal. Appl. 296, 563–577 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Bartsch, T., Willem, M.: Infinitely many radial solutions of a semilinear elliptic problem on \(\mathbb{R}^N\). Arch. Ration. Mech. Anal. 124, 261–276 (1993)

    MATH  Google Scholar 

  3. Bartsch, T., Liu, Z.: On a superlinear elliptic \(p\)-Laplacian equation. J. Differ. Equ. 198, 149–175 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Bartsch, T., Liu, Z., Weth, T.: Nodal solutions of a \(p\)-Laplacian equation. Proc. Lond. Math. Soc. 91, 129–152 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Bartsch, T., Clapp, M., Weth, T.: Configuration spaces, transfer and 2- nodal solutions of semiclassical nonlinear Schrödinger equation. Math. Ann. 338, 147–185 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Byeon, J., Wang, Z.Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations II. Calc. Var. Partial Differ. Equ. 18, 207–219 (2003)

    MATH  Google Scholar 

  7. Cao, D., Zhu, X.: On the existence and nodal character of semilinear elliptic equations. Acta. Math. Sci. 8, 345–359 (1988)

    MathSciNet  MATH  Google Scholar 

  8. Chen, S., Tang, X.: Infinitely many solutions for super-quadratic Kirchhoff-type equations with sign-changing potential. Appl. Math. Lett. 67, 40–45 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Chen, S., Wang, Z.: Localized nodal solutions of higher topological type for semiclassical nonlinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 56, 1–26 (2017)

    MATH  Google Scholar 

  10. Chen, S., Liu, J., Wang, Z.: Localized nodal solutions for a critical nonlinear Schrödinger equation. J. Funct. Anal. 277, 594–640 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Chen, S., Zhang, B., Tang, X.: Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity. Adv. Nonlinear Anal. 9, 148–167 (2020)

    MathSciNet  MATH  Google Scholar 

  12. del Pino, M., Felmer, P.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4, 121–137 (1996)

    MathSciNet  MATH  Google Scholar 

  13. D’Aprile, T., Pistoia, A.: Existence, multiplicity and profile of sign-changing clustered solutions of a semiclassical nonlinear Schrödinger equation. Ann. Inst. Henri Poincaré Anal. Non Linéaire 26, 1423–1451 (2009)

    MathSciNet  MATH  Google Scholar 

  14. D’Aprile, T., Ruiz, D.: Positive and sign-changing clusters around saddle points of the potential for nonlinear elliptic problems. Math. Z. 268, 605–634 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Deng, Y., Peng, S., Shuai, W.: Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in \(\mathbb{R}^3\). J. Funct. Anal. 269, 3500–3527 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Floer, A., Weinstein, A.: Nonspreading wave pachets for the packets for the cubic Schrödinger with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)

    MathSciNet  MATH  Google Scholar 

  17. He, Y., Li, G.: Standing waves for a class of Kirchhoff type problems in \(\mathbb{R}^3\) involving critical Sobolev exponents. Calc. Var. Partial Differ. Equ. 54, 3067–3106 (2015)

    MATH  Google Scholar 

  18. He, Y., Li, G., Peng, S.: Concentrating bound states for Kirchhoff type problems in \(\mathbb{R}^3\) involving critical Sobolev exponents. Adv. Nonlinear Stud. 14, 483–510 (2014)

    MathSciNet  MATH  Google Scholar 

  19. He, X., Zou, W.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in \(\mathbb{R}^3\). J. Differ. Equ. 252, 1813–1834 (2012)

    MATH  Google Scholar 

  20. Ji, C., Rădulescu, V.D.: Multiplicity and concentration of solutions for Kirchhoff equations with magnetic field. Adv. Nonlinear Stud. (2021). https://doi.org/10.1515/ans-2021-2130

    Article  MathSciNet  MATH  Google Scholar 

  21. Ji, C., Rădulescu, V.D.: Concentration phenomena for magnetic Kirchhoff equations with critical growth. Discret. Contin. Dyn. Syst. (2021). https://doi.org/10.3934/dcds.2021088

    Article  MATH  Google Scholar 

  22. Ji, C., Fang, F., Zhang, B.: A multiplicity result for asymptotically linear Kirchhoff equations. Adv. Nonlinear Anal. 8, 267–277 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Kang, X., Wei, J.: On interacting bumps of semi-classical states of nonlinear Schrödinger equations. Adv. Differ. Equ. 5, 899–928 (2000)

    MATH  Google Scholar 

  24. Kim, S., Seok, J.: On nodal solutions of nonlinear Schrödinger-Poisson equations. Commun. Contemp. Math. 14, 1–16 (2012)

    MATH  Google Scholar 

  25. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)

    MATH  Google Scholar 

  26. Li, Q., Wu, X.: A new result on high energy solutions for Schrödinger-Kirchhoff type equations in \(\mathbb{R}^N\). Appl. Math. Lett. 30, 24–27 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Li, Q., Teng, K., Wu, X.: Ground states for Kirchhoff-type equations with critical or supercritical growth. Math. Methods Appl. Sci. 40, 6732–6746 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Li, G., Luo, P., Peng, S., Wang, C., Xiang, C.: A singularly perturbed Kirchhoff problem revisited. J. Differ. Equ. 268, 541–589 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Li, Q., Teng, K., Wang, W., Zhang, J.: Concentration phenomenon of solutions for a class of Kirchhofi-type equations with critical growth. J. Math. Anal. Appl. 491, 124355 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Lin, X., Wei, J.: Existence and concentration of ground state solutions for a class of Kirchhoff-type problems. Nonlinear Anal. 195, 111715 (2020)

    MathSciNet  MATH  Google Scholar 

  31. Lions, J.L.: On some questions in boundary value problems of mathematical physics, in: Contemporary Developments in Continuum Mechanics and Partial Differential Equations, Proc. Internat. Sympos. Inst. Mat. Univ. Fed. Rio de Janeiro, 1997, in: North-Holland Math. Stud. 30, 284–346 (1978)

  32. Liu, J., Liu, X., Wang, Z.: Multiple mixed states of nodal solutions for nonlinear Schrödinger systems. Calc. Var. Partial Differ. Equ. 52, 565–586 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Liu, Z., Wang, Z., Zhang, J.: Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system. Ann. Math. Pura Appl. 195, 775–794 (2016)

    MATH  Google Scholar 

  34. Liu, X., Liu, J., Wang, Z.: Localized nodal solutions for quasilinear Schrödinger equations. J. Differ. Equ. 267, 7411–7461 (2019)

    MATH  Google Scholar 

  35. Mao, A., Zhang, Z.: Sign-changing and multiple solutions of Kirchhoff type problems without P.S. condition. Nonlinear Anal. 70, 1275–1287 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Mingione, G., Rădulescu, V.: Recent developments in problems with nonstandard growth and nonuniform ellipticity (2021). https://doi.org/10.1016/j.jmaa.2021.125197

  37. Oh, Y.G.: Existence of semiclasical bound states of nonlinear Schrödinger equations of the calss \((v)_a\). Commun. Partial Differ. Equ. 13, 1499–1519 (1988)

    MATH  Google Scholar 

  38. Oh, Y.G.: On positive multi-bump bound states of nonlinear Schrödinger equations under multiple well potential. Commun. Math. Phys. 131, 223–253 (1990)

    MATH  Google Scholar 

  39. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    MathSciNet  MATH  Google Scholar 

  40. Shuai, W.: Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains. J. Differ. Equ. 259, 1256–1274 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Tang, X., Cheng, B.: Ground state sign-changing solutions for Kirchhoff type problems in bounded domains. J. Differ. Equ. 261, 2384–2402 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Tang, X., Chen, S.: Ground state solutions of Nehari-Pohoz̆aev type for Kirchhoff-type problems with general potentials. Calc. Var. Partial Differ. Equ. 56, 110 (2017)

    MATH  Google Scholar 

  43. Tang, X., Cheng, B.: Singularly perturbed Choquard equations with nonlinearity satisfying Berestycki-Lions assumptions. Adv. Nonlinear Anal. 9, 413–437 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153, 229–244 (1993)

    MATH  Google Scholar 

  45. Wang, J., Tian, L., Xu, J., Zhang, F.: Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J. Differ. Equ. 253, 2314–2351 (2012)

    MathSciNet  MATH  Google Scholar 

  46. Xiang, M., Rădulescu, V., Zhang, B.: Combined effects for fractional Schrödinger-Kirchhoff systems with critical nonlinearities. ESAIM Control Optim. Calc. Var. 24, 1249–1273 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Xiang, M., Rădulescu, V., Zhang, B.: Fractional Kirchhoff problems with critical Trudinger-Moser nonlinearity. Calc. Var. Partial Differ. Equ. 58, 57 (2019)

    MathSciNet  MATH  Google Scholar 

  48. Xiang, M., Zhang, B., Rădulescu, V.: Superlinear Schrödinger-Kirchhoff type problems involving the fractional \(p\)-Laplacian and critical exponent. Adv. Nonlinear Anal. 9, 690–709 (2020)

    MathSciNet  MATH  Google Scholar 

  49. Zhang, Z., Perera, K.: Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow. J. Math. Anal. Appl. 317, 456–463 (2006)

    MathSciNet  MATH  Google Scholar 

  50. Zhang, J., Zhang, W., Tang, X.: Ground state solutions for Hamiltonian elliptic system with inverse square potential. Discret. Contin. Dyn. Syst. 37, 4565–4583 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported in part by the National Natural Science Foundation of China (12026228, 12026227, 11801153, 11801545, 11901514) and the Yunnan Province Applied Basic Research for Youths (2018FD085) and the Yunnan Province Local University (Part) Basic Research Joint Project (2017FH001-013) and the Yunnan Province Applied Basic Research for General Project (2019FB001) and Technology Innovation Team of University in Yunnan Province.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Nie, J., Wang, W. et al. Existence and Asymptotic Behavior of Localized Nodal Solutions for a Class of Kirchhoff-Type Equations. J Geom Anal 31, 12411–12445 (2021). https://doi.org/10.1007/s12220-021-00722-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-021-00722-0

Keywords

Mathematics Subject Classification

Navigation