Skip to main content
Log in

Variability of the water stock dynamics in karst: insights from surface-to-tunnel geophysics

Hétérogénéité et dynamique de la ressource en eau karstique: apport de la géophysique surface-tunnel

Variabilidad en la dinámica de las reservas de agua en el karst: conocimientos a partir de la geofísica desde la superficie hasta un túnel

喀斯特贮存水动态的变异特征:基于地表到隧道的地球物理学的认识

Variabilitas dinamika stok air di karst: pratinjau dari geofisika permukaan-ke-terowongan

Variabilidade da dinâmica do estoque de água no carste: percepções a partir da geofísica da superfície até a cavidade

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A hydrogeophysical field experiment was conducted on a karst hydrosystem in the south of France to investigate groundwater transfer and storage variability at a scale of a few hundred meters. A 200-m-long N/S tunnel going through limestone provided the unique opportunity to set up measurements with original configurations inside the unsaturated zone. Three geophysical methods were used: gravimetry, electrical, and seismic. Two-dimensional electrical resistivity and seismic velocity images were retrieved by surrounding the medium with electrodes and geophones, both at the surface and inside the tunnel to improve the sensitivity in depth. This gave information about the weathering state but also about the limestone content and associated porosity characteristics, as the methods are sensitive to distinct properties with different resolution patterns. A time-lapse gravity surface-to-tunnel profile supplied information on the seasonal water mass changes and its variations along the tunnel. Besides, tracers were injected on each side of the profile from the surface and the restitution was sampled in the tunnel drip flows. A contrasting hydrological behavior was evidenced on each side of the tunnel from temporal gravity measurements and tracing tests. The analysis of the whole dataset allowed for better interpretation of the imaged structures, with different hydrological functioning. This study demonstrates the variability of the karst behavior at the scale of a few hundred meters and the benefits of a multi-method approach coupling hydrological and geophysical measurements. This kind of experiment provides fundamental understanding of systems that cannot be directly observed.

Résumé

Une expérimentation hydrogéophysique a été réalisée sur un hydrosystème karstique du sud de la France afin d’étudier l’hétérogénéité des stocks et transferts d’eau à l’échelle de la centaine de mètres. Un tunnel de 200 mètres de long traversant un massif calcaire a fourni une opportunité unique de réaliser des mesures à l’intérieur de la zone non saturée du karst. Trois méthodes géophysiques ont été utilisées: gravimétrie, électrique et sismique. Des images en deux dimensions de la résistivité électrique et de la vitesse des ondes sismiques ont été obtenues en plaçant des électrodes et des géophones à la fois à la surface et dans le tunnel, améliorant ainsi la sensibilité des mesures en profondeur. Ces images ont fourni des informations sur l’état d’altération du calcaire mais aussi sur la porosité et son remplissage puisque les méthodes électriques et sismiques sont sensibles à des propriétés distinctes et ont des résolutions différentes. Un profil des différences gravimétriques entre la surface et le tunnel, répété dans le temps, a permis de quantifier les changements saisonniers de masse d’eau et leurs variations le long du tunnel. En complément, des traceurs ont été injectés en surface de chaque côté du profil et leurs restitutions ont été recherchées dans l’eau percolant dans le tunnel. La gravimétrie et les traçages ont mis en évidence des comportements hydrologiques différents de chaque côté du tunnel. L’analyse de cet ensemble unique de données a permis une meilleure interprétation des structures imagées et de leurs fonctionnements hydrologiques. Cette étude démontre la variabilité des comportements karstiques à l’échelle de la centaine de mètres ainsi que les bénéfices d’une approche multi-méthodes couplant mesures hydrologiques et géophysiques. Ce type d’expérimentation participe à la compréhension fondamentale des hydrosystèmes impossibles à observer directement.

Resumen

Se llevó a cabo un experimento hidrogeofísico de campo en un hidrosistema kárstico del sur de Francia para investigar la transferencia de aguas subterráneas y la variabilidad del almacenamiento a una escala de unos cientos de metros. Un túnel N/S de 200 m de longitud que atraviesa una caliza brindó la oportunidad única de realizar mediciones con configuraciones originales dentro de la zona no saturada. Se utilizaron tres métodos geofísicos: gravimetría, eléctrico y sísmico. Se obtuvieron imágenes bidimensionales de resistividad eléctrica y velocidad sísmica rodeando el medio con electrodos y geófonos, tanto en la superficie como en el interior del túnel para mejorar la sensibilidad en profundidad. Esto proporcionó información sobre el estado de meteorización, pero también sobre el contenido de la caliza y las características de porosidad asociadas, ya que los métodos son sensibles a propiedades distintas con patrones de resolución diferentes. Un perfil gravitacional entre la superficie y el túnel, realizado en un lapso, proporcionó información sobre los cambios estacionales de la masa de agua y sus variaciones a lo largo del túnel. Además, se inyectaron trazadores a cada lado del perfil desde la superficie y se muestreó la restitución en los flujos de drenaje del túnel. Se evidenció un comportamiento hidrológico contrastado en cada lado del túnel a partir de las mediciones de gravedad temporal y las pruebas de trazadores. El análisis de todo el conjunto de datos permitió una mejor interpretación de las estructuras fotografiadas, con un funcionamiento hidrológico diferente. Este estudio demuestra la variabilidad del comportamiento kárstico a la escala de unos cientos de metros y los beneficios de un enfoque multimétodo que acopla las mediciones hidrológicas y geofísicas. Este tipo de experimento proporciona una comprensión fundamental de los sistemas que no se pueden observar directamente.

摘要

在法国南部的喀斯特水利系统进行了水文地球物理实验,以研究数百米范围内的地下水运动和储量变化。一条长200米的N/S隧道穿过石灰岩,这为非饱和带原位测量提供了绝好的机会。采用了三种地球物理方法:重力法,电法和地震法。通过在隧道表面和内部用电极和地震检波器包裹介质,可以检索二维电阻率和地震波速度图像,以提高深度的灵敏度。试验给出了风化程度的相关信息,还提供了有关石灰石含量和相关孔隙率特征的信息,因为这些方法对具有不同分辨率模式的不同属性敏感。随时间推移的重力地表到隧道剖面提供了有关季节性水质量变化及其沿隧道变化的信息。此外,在表面剖面两侧都注入了示踪剂,并从隧道滴水中对示踪液进行了采样。通过时间重力测量和示踪试验,证实了隧道两侧相反的水文行为。对整个数据的分析可以更好地解释具有不同水文功能的成像结构。本研究展示了数百米尺度的喀斯特特征变化,以及结合水文和地球物理测量的多方法的好处。这种实验提供了对无法直接观察到的系统的基本了解。

Abstrak

Eksperimen lapangan hidrogeofisika dilakukan pada sistem hidro karst di selatan Prancis untuk menyelidiki transfer dan variabilitas penyimpanan air tanah pada skala ratusan meter. Terowongan utara-selatan sepanjang 200 m melewati batu kapur memberikan kesempatan menarik untuk melakukan pengukuran dengan konfigurasi asli di dalam zona tak jenuh. Tiga metode geofisika digunakan: gravimetri, geolistrik, dan seismik. Gambar resistivitas elektrik dua dimensi dan kecepatan seismik diambil dengan mengelilingi medium dengan elektroda dan geofon, baik di permukaan maupun di dalam terowongan, untuk meningkatkan sensitivitas di kedalaman. Hal ini memberikan informasi tentang kondisi pelapukan dan juga tentang kandungan batu kapur dan karakteristik porositas terkait, karena metode ini peka terhadap properti yang berbeda dengan pola resolusi yang berbeda. Variasi temporal dari profil gravitasi permukaan-ke-terowongan memberikan informasi tentang perubahan massa air musiman dan variasinya di sepanjang terowongan. Selain itu, alat pelacak ditanamkan pada setiap sisi profil dari permukaan dan restitusi diambil sampelnya di aliran tetes terowongan. Perilaku hidrologi yang kontras dibuktikan di setiap sisi terowongan dari pengukuran gravitasi temporal dan uji alat pelacak. Analisis seluruh kumpulan data memungkinkan interpretasi yang lebih baik dari struktur yang dipetakan, dengan fungsi hidrologi yang berbeda. Studi ini mendemonstrasikan variabilitas perilaku karst pada skala ratusan meter dan manfaat dari pendekatan multi-metode yang digabungkan dengan pengukuran hidrologi dan geofisika. Eksperimen semacam ini memberikan pemahaman mendasar tentang sistem yang tidak dapat diamati secara langsung.

Resumo

Um experimento hidrogeofísico de campo foi realizado em um hidrossistema cárstico no sul da França para investigar a transferência de água subterrânea e a variabilidade de armazenamento na escala de algumas centenas de metros. Um túnel 200 m N/S que atravessa um calcário deu a oportunidade única de fazer medições em uma condição original dentro da zona não saturada. Três métodos geofísicos foram usados: gravimetria, elétrico e sísmico. As imagens bidimensionais de resistividade elétrica e velocidade sísmica foram obtidas circundando o meio com eletrodos e geofones, tanto na superfície quanto dentro do túnel para melhorar a sensibilidade em profundidade. Isso forneceu informações não somente sobre o grau de intemperismo, mas também sobre a quantidade de calcário e as características de porosidade associadas a ele, uma vez que os métodos são sensíveis a propriedades distintas com padrões de resolução diferentes. Um perfil gravimétrico em lapso temporal da superfície ao túnel forneceu informações sobre as mudanças sazonais da massa de água e as variações destas ao longo do túnel. Além disso, traçadores foram injetados em cada lado do perfil na superfície, e recuperados a partir dos fluxos de gotejamento dentro do túnel. Foi evidenciado um comportamento hidrológico contrastante a cada lado do túnel a partir de medições de gravimetria temporal e testes de traçadores. Esta análise integrada de dados permitiu uma melhor interpretação das estruturas imageadas, com diferentes funcionamentos hidrológicos. O estudo demonstra a variabilidade do comportamento cárstico na escala de algumas centenas de metros, e os benefícios de uma abordagem multimetológica ao acoplar medições hidrológicas e geofísicas. Esse tipo de experimento fornece uma compreensão fundamental de sistemas que não podem ser observados diretamente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aquilina L, Ladouche B, Dörfliger N (2006) Water storage and transfer in the epikarst of karstic systems during high flow periods. J Hydrol 327(3–4):472–485. https://doi.org/10.1016/j.jhydrol.2005.11.054

    Article  Google Scholar 

  • Al-Fares W, Bakalowicz M, Guérin R, Duckam M (2002) Analysis of the karst aquifer by means of a ground penetrating radar (GPR): example of the Lamalou area (Hérault, France). J Appl Geophys 51(2–4):97–106. https://doi.org/10.1016/S0926-9851(02)00215-X

    Article  Google Scholar 

  • Bicalho CC, Batiot-Guilhe C, Taupin JD, Patris N, Van Exter S, Jourde H (2019) A conceptual model for groundwater circulation using isotopes and geochemical tracers coupled with hydrodynamics: a case study of the Lez karst system, France. Chem Geol 528:118442. https://doi.org/10.1016/j.chemgeo.2017.08.014

    Article  Google Scholar 

  • Bing Z, Greenhalgh SA (2001) Cross-hole resistivity tomography using different electrode configurations. Geophys Prospect 48(5):887–912. https://doi.org/10.1046/j.1365-2478.2000.00220.x

  • Bruxelles L (2001) Dépôts et altérites des plateaux du Larzac central: Causses de l’Hospitalet et de Campestre (Aveyron, Gard, Hérault)—evolution morphogénétique, conséquences géologiques et implications pour l’aménagement [Deposits and alterites of plateau of Larzac central: causses from l’Hospitalet and de Campestre (Aveyron, Gard, Hérault)—morphogenetic evolution, geological consequences and implications for development]. PhD Thesis, Aix-Marseille 1, France

  • Caterina D, Beaujean J, Robert T, Nguyen F (2013) A comparison study of different image appraisal tools for electrical resistivity tomography. Near Surf Geophys 11(6):639–658. https://doi.org/10.3997/1873-0604.2013022

    Article  Google Scholar 

  • Carriere SD, Chalikakis K, Sénéchal G, Danquigny C, Emblanch C (2013) Combining electrical resistivity tomography and ground penetrating radar to study geological structuring of karst unsaturated zone. J Appl Geophys 94:31–41. https://doi.org/10.1016/j.jappgeo.2013.03.014

    Article  Google Scholar 

  • Chalikakis K, Plagnes V, Guerin R, Valois R, Bosch FP (2011) Contribution of geophysical methods to karst-system exploration: an overview. Hydrogeol J 19(6):1169. https://doi.org/10.1007/s10040-011-0746-x

    Article  Google Scholar 

  • Champollion C, Deville S, Chery J, Doerflinger E, Le Moigne N, et al (2018) Estimating epikarst water storage by time-lapse surface-to-depth gravity measurements. https://doi.org/10.5194/hess-22-3825-2018

  • Creutzfeldt B, Güntner A, Thoss H, Merz B, Wziontek H (2010) Measuring the effect of local water storage changes on in situ gravity observations: case study of the geodetic observatory Wettzell, Germany. Water Resour Res 46(8). https://doi.org/10.1029/2009WR008359

  • Dausse A, Jourde H, Léonardi V (2015) Multi-scale assessment of hydrodynamic properties in a karst aquifer (Lez, France). In: Hydrogeological and environmental investigations in karst systems. Springer, Heidelberg, pp 331–338. https://doi.org/10.1007/978-3-642-17435-3_37

    Chapter  Google Scholar 

  • Demirel C, Candansayar ME (2017) Two-dimensional joint inversions of cross-hole resistivity data and resolution analysis of combined arrays. Geophys Prospect 65(3):876–890. https://doi.org/10.1111/1365-2478.12432

    Article  Google Scholar 

  • Dentz M, Le Borgne T, Englert A, Bijeljic B (2011) Mixing, spreading and reaction in heterogeneous media: a brief review. J Contam Hydrol 120:1–17. https://doi.org/10.1016/j.jconhyd.2010.05.002

    Article  Google Scholar 

  • Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271

    Article  Google Scholar 

  • Dubois C, Quinif Y, Baele JM, Barriquand L, Bini A, Bruxelles L et al (2014) The process of ghost-rock karstification and its role in the formation of cave systems. Earth Sci Rev 131:116–148. https://doi.org/10.1016/j.earscirev.2014.01.006

    Article  Google Scholar 

  • Dussauge-Peisser C, Wathelet M, Jongmans D, Hantz D, Couturier B, Sintes M (2003) Investigation of a fractured limestone cliff (Chartreuse Massif, France) using seismic tomography and ground-penetrating radar. Near Surf Geophys 1(4):161–170. https://doi.org/10.3997/1873-0604.2003007

    Article  Google Scholar 

  • Ford D, Williams PD (2013) Karst hydrogeology and geomorphology. Wiley, Chichester, UK

    Google Scholar 

  • Fores B, Champollion C, Moigne NL, Bayer R, Chery J (2017) Assessing the precision of the iGrav superconducting gravimeter for hydrological models and karstic hydrological process identification. Geophys J Int 208(1):ggw396. https://doi.org/10.1093/gji/ggw396

  • Gallardo LA, Meju MA (2003) Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data. Geophys Res Lett 30(13). https://doi.org/10.1029/2003GL017370

  • Geuzaine C, Remacle JF (2009) A three-dimensional finite element mesh generator with built-in pre-and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331. https://doi.org/10.1002/nme.2579

    Article  Google Scholar 

  • Gehman CL, Harry DL, Sanford WE, Stednick JD, Beckman NA (2009) Estimating specific yield and storage change in an unconfined aquifer using temporal gravity surveys. Water Resour Res 45(4). https://doi.org/10.1029/2007WR006096

  • Gèze B (1985) Notice explicative de la feuille de Nant à 1/50 000 [Explanatory note of the 1:50 000 Nant geological map]. BRGM, Orléans, France

  • Gritto R, Korneev VA, Daley TM, Feighner MA, Majer EL, Peterson JE (2004) Surface-to-tunnel seismic tomography studies at Yucca Mountain, Nevada. J Geophys Res: Solid Earth 109(B3). https://doi.org/10.1029/2002JB002036

  • Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M (2014) Karst water resources in a changing world: review of hydrological modeling approaches. Rev Geophys 52(3):218–242. https://doi.org/10.1002/2013RG000443

    Article  Google Scholar 

  • Hinderer J, Hector B, Mémin A, Calvo M (2016) Hybrid gravimetry as a tool to monitor surface and underground mass changes. In: International Symposium on Earth and Environmental Sciences for Future Generations. Springer, Cham, Switzerland, pp 123–130

  • Jacob T, Chery J, Bayer R, Le Moigne N, Boy JP, Vernant P, Boudin F (2009) Time-lapse surface to depth gravity measurements on a karst system reveal the dominant role of the epikarst as a water storage entity. Geophys J Int 177(2):347–360. https://doi.org/10.1111/j.1365-246X.2009.04118.x

    Article  Google Scholar 

  • Jacob T, Bayer R, Chery J, Le Moigne N (2010) Time-lapse microgravity surveys reveal water storage heterogeneity of a karst aquifer. J Geophys Res: Solid Earth 115(B6). https://doi.org/10.1029/2009JB006616

  • Jeannin M, Garambois S, Grégoire C, Jongmans D (2006) Multiconfiguration GPR measurements for geometric fracture characterization in limestone cliffs (Alps). Geophysics 71(3):B85–B92

    Article  Google Scholar 

  • Käss WA (1994) Hydrological tracing practice on underground contaminations. Environ Geol 23(1):23–29

    Article  Google Scholar 

  • Kemna A (2000) Tomographic inversion of complex resistivity: theory and application. Der Andere Verlag, Tönning, Germany

  • Klimchouk A (2004) Towards defining, delimiting and classifying epikarst: its origin, processes and variants of geomorphic evolution. Speleogen Evolution Karst Aquifers 2(1):1–13

    Google Scholar 

  • Lederer M (2009) Accuracy of the relative gravity measurement. Acta Geodyn Geomater 6(3):155

    Google Scholar 

  • Lesparre N, Boyle A, Grychtol B, Cabrera J, Marteau J, Adler A (2016) Electrical resistivity imaging in transmission between surface and underground tunnel for fault characterization. J Appl Geophys 128:163–178. https://doi.org/10.1016/j.jappgeo.2016.03.004

    Article  Google Scholar 

  • Mangin A (1975) Contribution à l’étude hydrodynamique des aquifères karstiques [Insights into hydrodynamic behaviour of karst aquifers]. PhD Thesis, Université de Dijon, France

  • Maufroy E, Gaffet S, Operto S, Guglielmi Y, Boyer D (2014) Travel time inversion from ground level to gallery: protocol for the characterization of P-wave seismic signature in a fractured-porous Urgonian platform at hectometric scale. Near Surf Geophys 12(6):697–708. https://doi.org/10.3997/1873-0604.2014025

    Article  Google Scholar 

  • Mazzilli N, Boucher M, Chalikakis K, Legchenko A, Jourde H, Champollion C (2016) Contribution of magnetic resonance soundings for characterizing water storage in the unsaturated zone of karst aquifers. Geophysics 81(4):WB49–WB61. https://doi.org/10.1190/GEO2015-0411.1

    Article  Google Scholar 

  • Mazzilli N, Bertin D, Jourde H, Lecoq N, Labat D, Danquigny C, Arfib B, Dal Soglio L (2019) KarstMod: a modelling platform for rainfall-discharge analysis and modelling dedicated to karst systems. Environ Model Softw 122:103927. https://doi.org/10.1016/j.envsoft.2017.03.015

    Article  Google Scholar 

  • Merlet S, Kopaev A, Diament M, Geneves G, Landragin A, Dos Santos FP (2008) Micro-gravity investigations for the LNE watt balance project. Metrologia 45(3):265

    Article  Google Scholar 

  • Moser TJ (1991) Shortest path calculation of seismic rays. Geophysics 56(1):59–67. https://doi.org/10.1190/1.1442958

    Article  Google Scholar 

  • Noushabadi MJ, Jourde H, Massonnat G (2011) Influence of the observation scale on permeability estimation at local and regional scales through well tests in a fractured and karstic aquifer (Lez aquifer, southern France). J Hydrol 403(3–4):321–336. https://doi.org/10.1016/j.jhydrol.2011.04.013

    Article  Google Scholar 

  • Novitsky CG, Holbrook WS, Carr BJ, Pasquet S, Okaya D, Flinchum BA (2018) Mapping inherited fractures in the critical zone using seismic anisotropy from circular surveys. Geophys Res Lett 45(7):3126–3135. https://doi.org/10.1002/2017GL075976

    Article  Google Scholar 

  • Pasquet S, Holbrook WS, Carr BJ, Sims KWW (2016) Geophysical imaging of shallow degassing in a Yellowstone hydrothermal system. Geophys Res Lett 43(23):12–027. https://doi.org/10.1002/2016GL071306

    Article  Google Scholar 

  • Pfeffer J, Champollion C, Favreau G, Cappelaere B, Hinderer J, et al (2013) Evaluating surface and subsurface water storage variations at small time and space scales from relative gravity measurements in semiarid Niger. Water Resour Res 49(6):3276–3291. https://doi.org/10.1002/wrcr.20235

  • Piccolroaz S, Majone B, Palmieri F, Cassiani G, Bellin A (2015) On the use of spatially distributed, time-lapse microgravity surveys to inform hydrological modeling. Water Resour Res 51(9):7270–7288. https://doi.org/10.1002/2015WR016994

    Article  Google Scholar 

  • Polydorides N, Lionheart WR (2002) A MATLAb toolkit for three-dimensional electrical impedance tomography: a contribution to the electrical impedance and diffuse optical reconstruction software project. Meas Sci Technol 13(12):1871

    Article  Google Scholar 

  • Robert T, Dassargues A, Brouyère S, Kaufmann O, Hallet V, Nguyen F (2011) Assessing the contribution of electrical resistivity tomography (ERT) and self-potential (SP) methods for a water well drilling program in fractured/karstified limestones. J Appl Geophys 75(1):42–53. https://doi.org/10.1016/j.jappgeo.2011.06.008

    Article  Google Scholar 

  • Robert T, Caterina D, Deceuster J, Kaufmann O, Nguyen F (2012) A salt tracer test monitored with surface ERT to detect preferential flow and transport paths in fractured/karstified limestones. Geophysics 77(2):B55–B67. https://doi.org/10.1190/geo2011-0313.1

    Article  Google Scholar 

  • Rücker C, Günther T, Wagner FM (2017) pyGIMLi: an open-source library for modelling and inversion in geophysics. Comput Geosci 109:106–123. https://doi.org/10.1016/j.cageo.2017.07.011

    Article  Google Scholar 

  • Schöberl J (1997) NETGEN an advancing front 2D/3D-mesh generator based on abstract rules. Comput Vis Sci 1(1):41–52

    Article  Google Scholar 

  • Scintrex Limited (2006) CG-5 Scintrex autograv system operation manual. Scintrex, Concord, ON

    Google Scholar 

  • Simyrdanis K, Tsourlos P, Soupios P, Tsokas G, Kim JH, Papadopoulos N (2015) Surface-to-tunnel electrical resistance tomography measurements. Near Surf Geophys 13(4):343–354. https://doi.org/10.3997/1873-0604.2015019

    Article  Google Scholar 

  • Tsourlos P, Ogilvy R, Papazachos C, Meldrum P (2011) Measurement and inversion schemes for single borehole-to-surface electrical resistivity tomography surveys. J Geophys Eng 8(4):487–497. https://doi.org/10.1088/1742-2132/8/4/001

    Article  Google Scholar 

  • Valois R, Camerlynck C, Dhemaied A, Guerin R, Hovhannissian G, Plagnes V, Rejiba F, Robain H (2011) Assessment of doline geometry using geophysics on the Quercy plateau karst (South France). Earth Surf Process Landf 36(9):1183–1192. https://doi.org/10.1002/esp.2144

    Article  Google Scholar 

  • Valois R, Galibert PY, Guerin R, Plagnes V (2016) Application of combined time-lapse seismic refraction and electrical resistivity tomography to the analysis of infiltration and dissolution processes in the epikarst of the Causse du Larzac (France). Near Surf Geophys 14(1):13–22. https://doi.org/10.3997/1873-0604.2015052

    Article  Google Scholar 

  • Vouillamoz JM, Legchenko A, Albouy Y, Bakalowicz M, Baltassat JM, Al-Fares W (2003) Localization of saturated karst aquifer with magnetic resonance sounding and resistivity imagery. Groundwater 41(5):578–586. https://doi.org/10.1111/j.1745-6584.2003.tb02396.x

    Article  Google Scholar 

  • Watlet A, Kaufmann O, Triantafyllou A, Poulain A, Chambers JE, Meldrum PI, Camp MV (2018) Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring. Hydrology and Earth System Sciences 22(2):1563–1592

    Article  Google Scholar 

Download references

Acknowledgements

The Scintrex CG5 relative gravimeter was loaned by the Gravity Mobile facility (GMOB) of RESIF-INSU. We thank N. Denchik, S. Baudin, E. Doerflinger, J. Chéry, O. Khairoun, S. Furst, A. Maréchal, G. Mainsant, A-K. Cooke and A. Fort for their help during the field experiments. We are grateful to Eric Cotteux (ITAP IRSTEA) for the Spectrometer and tracings equipment, and to Thomas Kremer for Magnetic Resonance Soundings attempts. The seismic equipment was provided by the CRITEX ANR-11-EQPX-0011 project and the METIS laboratory at Sorbonne Université. We would also like to acknowledge the farmer who let us access the cave. All the data used in this study (geophysics, tracers and meteorological data) are available on the OSU OREME observatory website (http://data.oreme.org/gek/home).

Funding

Gravity surveys were part of the OSU OREME observatory funded by the Institut de Recherche pour le Développement (IRD) and the Institut National des Sciences de l’Univers (INSU) and of the National observation system (SNO) H+. N. Lesparre benefited from a BEcome a WAlloon REsearcher fellowship fund co-financed by the Department of Research Programs of the Federation Wallonia – Brussels and the COFUND program of the European Union that both founded the project SUITE4D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Fores.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 491 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fores, B., Champollion, C., Lesparre, N. et al. Variability of the water stock dynamics in karst: insights from surface-to-tunnel geophysics. Hydrogeol J 29, 2077–2089 (2021). https://doi.org/10.1007/s10040-021-02365-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-021-02365-5

Keywords

Navigation