Skip to main content
Log in

Numerical investigation of expandable graphite suppression on metal-based fire

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Aqueous suppression systems (i.e. fire sprinkler, water mist) have been extensively utilised for compartmental fire suppression due to their significant heat extraction ability. Nevertheless, challenges can be foreseen in suppressing water-reactive chemicals as a violent explosive reaction will be triggered, such as alkali metals (i.e. Na, Li) and alkali metal hydrides (i.e. LiH, LiAlH4). In this study, expandable graphite (EG) is proposed as a potential suppressant against alkaline metal fire due to its advantageous thermal properties and chemical stability. In-house user-defined functions (UDFs) are developed to characterise the particle expansion coupled with the heat and mass transfer process between EG and the fluid mixture. The model is incorporated in the large eddy simulation (LES) framework to study the temporal fire behaviours and the suppression effect of EG against the flame plume. The numerical model was validated by comparison of temperature profiles and expansion rate of EG particles along the suppression event against experimental results. The EG was found to be relatively effective in fire suppression compared to the same amount of natural graphite. Parametric analysis was conducted on a range of EG particle size between 400 µm—1000 µm to investigate the suppression mechanisms and the suppression efficiency of EG particles against metal fires. Within the range of the current study (400 µm—1000 µm), the EG particle diameter of 400 µm has achieved the most effective suppression performance and the suppression time of 2 s. It is observed that the smaller size of EG tends to be effective in fire suppression than the larger sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

A:

Inlet Area (m2)

\(A_0\) :

Initial Inlet Area (m2)

\(A_p\) :

Surface Area of Particle (m2)

\(C_d\) :

Drag Coefficient

\(C_s\) :

WALE Model Constant

\(c_p\) :

Heat Capacity (J/K)

\(D^\ast\) :

Characteristic Length (m)

d:

Distance to the Closest Wall (m)

\(d_p\) :

Particle Diameter (m)

F:

Additional Force (N)

f:

Mixture Fraction

gi:

Gravity (m/s2)

h:

Convective Heat Transfer Coefficient (W/m2K)

\(L_s\) :

Mixing Length for Sub-grid Scales

\(m_p\) :

Mass of Particle (kg)

\(m_f\) :

Mass Loss Coefficient (kg/s)

\(\overline p\) :

Background Pressure (Pa)

Pr:

Molecular Prandtl Number

Re:

Reynold’s Number

\(S_{ij}^d\) :

Rate-of-Strain Tensor

\(\overline{S_{rad}}\) :

Global Radiative Heat Exchange

\(\overline T\) :

Temperature (K)

\(T_\infty\) :

Local Temperature of the Continuous Phase (K)

\(T_p\) :

Particle Temperature (K)

\(V_0\) :

Initial Volume (m3)

\(\alpha_{1,2,3}\) :

Range Constants For Corresponding Reynolds Number

\(\kappa_d\) :

Von Kármán constant

\(\in_p\) :

Particle Emissivity

σ:

Stefan-Boltzmann constant

\(\theta_R^4\) :

Radiation Temperature (K)

ρ:

Density (kg/m3)

\(\rho_p\) :

Particle Density (kg/m3)

\(u_i\) :

Velocity Vector (m/s)

\(u\) :

Fluid Phase Velocity (m/s)

\(u_p\) :

Particle Velocity (m/s)

\(\mu\) :

Molecular Viscosity (kg/ms)

\(\mu_t\) :

Turbulent Viscosity (kg/ms)

\(\overline{\omega_T}\) :

Filtered Heat Release Rate (W)

\(\delta_{ij}\) :

Rate of Strain

\(\tau_{ij}\) :

Subgrid-scale Stress

References

  1. Sakintuna B, Lamari-Darkrim F, Hirscher M (2007) "Metal hydride materials for solid hydrogen storage: A review," Intern J Hydro Energy 32(9):1121–1140. 2007/06/01. https://doi.org/10.1016/j.ijhydene.2006.11.022

  2. Association NFP (2006) Standard for Combustible Metals. National Fire Protection Association.

  3. Safety CfCP (1995) Guidelines for safe storage and handling of reactive materials. Am Ins Chem Eng.

  4. Handbook D (1994) "Primer on spontaneous heating and pyrophoricity," US Department of energy, Washington, DC, 20585

  5. Fluegeman C, Hilton T, Moder KP, Stankovich R (2005) Development of detailed action plans in the event of a sodium hydride spill/fire. Process Saf Prog 24(2):86–90

    Article  Google Scholar 

  6. Huo Y, Zhang ZG, Zou GW (2020) "Experimental study on the thermal flow characteristics of a columnar sodium fire affected by a small amount of fire extinguishing powder in a cylindrical confined space." Appl Thermal Eng 170:114983. 2020/04/01/. https://doi.org/10.1016/j.applthermaleng.2020.114983

  7. Lin S, Dong L, Zhang J, Lu H (2016) "Room-Temperature Intercalation and ∼1000-Fold Chemical Expansion for Scalable Preparation of High-Quality Graphene." Chem Mater 28(7):2138–2146 2016/04/12. https://doi.org/10.1021/acs.chemmater.5b05043

  8. Cai M, Thorpe D, Adamson DH, Schniepp HC (2012) "Methods of graphite exfoliation," J Mater Chem. 22(48):24992–25002. https://doi.org/10.1039/C2JM34517J

  9. Peng T, Liu B, Gao X, Luo L, Sun H (2018) Preparation, quantitative surface analysis, intercalation characteristics and industrial implications of low temperature expandable graphite. Appl Surf Sci 444:800–810. https://doi.org/10.1016/j.apsusc.2018.03.089

    Article  Google Scholar 

  10. Zhan H, Zhang Y, Bell JM, Gu Y (2015) "Suppressed Thermal Conductivity of Bilayer Graphene with Vacancy-Initiated Linkages." J Physical Chem C 119(4):1748–1752. 2015/01/29. https://doi.org/10.1021/jp5117905

  11. Pang XY, Song MK, TIAN Y, Duan MW (2012) "Preparation of high dilatability expandable graphite and its flame retardancy for lldpe." J Chilean Chem Soc 57(3)

  12. Zhang Z, Li D, Xu M, Li B (2020) "Synthesis of a novel phosphorus and nitrogen-containing flame retardant and its application in rigid polyurethane foam with expandable graphite." Polym Degrad Stability 173:109077

  13. Acuña P et al. (2020) "Synergistic effect of expandable graphite and phenylphosphonic-aniline salt on flame retardancy of rigid polyurethane foam" Polym Degrad Stability 179:109274. 2020/09/01. https://doi.org/10.1016/j.polymdegradstab.2020.109274

  14. Wang Y, Zhao J, Xiaojing M (2019) "Effect of expandable graphite on polyester resin-based intumescent flame retardant coating," Prog Organic Coat 132:178–183. 2019/07/01. https://doi.org/10.1016/j.porgcoat.2019.03.050

  15. Guler T, Tayfun U, Bayramli E, Dogan M (2017) "Effect of expandable graphite on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite&hydromagnesite mineral." Thermochimica Acta 647:70–80. 2017/01/10. https://doi.org/10.1016/j.tca.2016.12.001

  16. Jaszak P (2020) "Modeling of the elastic properties of compressed expanded graphite - A material used in spiral wound gaskets." Intern J Pressure Vessels Piping 187104158. 2020/11/01. https://doi.org/10.1016/j.ijpvp.2020.104158

  17. Lin W, Ling Z, Zhang Z, Fang X (2020) "Experimental and numerical investigation of sebacic acid/expanded graphite composite phase change material in a double-spiral coiled heat exchanger." J Energy Storage 32:101849. 2020/12/01. https://doi.org/10.1016/j.est.2020.101849

  18. Toyoda M, Nishi Y, Iwashita N,Inagaki M (2003) "Sorption and recovery of heavy oils using exfoliated graphite Part IV: Discussion of high oil sorption of exfoliated graphite." Desalination 151(2):139–144. 2003/01/10. https://doi.org/10.1016/S0011-9164(02)00992-X

  19. Li C, Chen X, Shen L, Bao N (2020) "Revisiting the Oxidation of Graphite: Reaction Mechanism, Chemical Stability, and Structure Self-Regulation." ACS Omega 5(7):3397–3404. 2020/02/25. https://doi.org/10.1021/acsomega.9b03633

  20. Yuen ACY et al (2018) Numerical study of the development and angular speed of a small-scale fire whirl. J Comput Sci 27:21–34. https://doi.org/10.1016/j.jocs.2018.04.021

    Article  Google Scholar 

  21. Chen Q, Chen TBY, Yuen ACY, Wang C, Chan QN, Yeoh GH (2020) "Investigation of door width towards flame tilting behaviours and combustion species in compartment fire scenarios using large eddy simulation." Intern J Heat Mass Trans 150:119373. 2020/04/01. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119373

  22. Klein M, Ketterl S, Hasslberger J (2019) Large eddy simulation of multiphase flows using the volume of fluid method: Part 1—Governing equations and a priori analysis. Experimental and Computational Multiphase Flow 1(2):130–144

    Article  Google Scholar 

  23. Liu H et al (2020) "Critical assessment on operating water droplet sizes for fire sprinkler and water mist systems." J Build Eng 28:100999. 2020/03/01. https://doi.org/10.1016/j.jobe.2019.100999

  24. Liu H et al (2021) "A novel stochastic approach to study water droplet/flame interaction of water mist systems," Num Heat Trans, Part A: Applications 1–27. https://doi.org/10.1080/10407782.2021.1872272

  25. Li YZ, Ingason H (2018) "Influence of fire suppression on combustion products in tunnel fires." Fire Safe J 97:96–110. 2018/04/01. https://doi.org/10.1016/j.firesaf.2017.06.011

  26. Huaizhong Li AL, Fan J, Yeoh GH, WangJ (2014) On DEM-CFD study of the dynamic characteristics of high speed micro-abrasive air jet.

  27. Yan Y, Li X, Ito K (2020) Numerical investigation of indoor particulate contaminant transport using the Eulerian-Eulerian and Eulerian-Lagrangian two-phase flow models. Experimental and computational multiphase flow 2(1):31–40

    Article  Google Scholar 

  28. Yuen ACY, Yeoh G, Timchenko V, Cheung S, Chan Q, Chen T (2017) "On the influences of key modelling constants of large eddy simulations for large-scale compartment fires predictions," Intern J Comput Fluid Dynamics 1–14. 08/02 2017. https://doi.org/10.1080/10618562.2017.1357809

  29. ACY Y, GH Y, RKK Y, T C (2013) "Numerical Simulation of a Ceiling Jet Fire in a Large Compartment." Procedia Eng 52(0):3–12. https://doi.org/10.1016/j.proeng.2013.02.097

  30. Yuen ACY, Yeoh GH (2013) Numerical simulation of an enclosure fire in a large test hall. Comput Thermal Sci 5(6):459–471. https://doi.org/10.1615/ComputThermalScien.2013005954

    Article  Google Scholar 

  31. Rehm RG, Baum HR (1978) The equations of motion for thermally driven buoyant flows. Journal of Research of the NBS 83:297–308

    MATH  Google Scholar 

  32. Knio OM, Najm HN, Wyckoff PS (1999) "A Semi-implicit Numerical Scheme for Reacting Flow: II. Stiff, Operator-Split Formulation," J Comput Phys 154(2):428–467. 1999/09/20. https://doi.org/10.1006/jcph.1999.6322

  33. Hinze JO (1975) Turbulence. McGraw-Hill (in English), New York

    Google Scholar 

  34. Nicoud F, F. Ducros F (1999) "Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor." Flow, Turbulence and Combustion 62(3):183–200. 1999/09/01. https://doi.org/10.1023/A:1009995426001

  35. Wang C et al (2019) "Influence of Eddy-Generation Mechanism on the Characteristic of On-Source Fire Whirl." Appl Sci 9:3989. 09/24/2019. https://doi.org/10.3390/app9193989

  36. Yuen ACY, Yeoh GY, Timchenko V, Cheung SCP,Barber TJ (2016) "Importance of detailed chemical kinetics on combustion and soot modelling of ventilated and under-ventilated fires in compartment." Intern J Heat Mass Trans 96171–188. 2016/05/01. https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.026

  37. Jones WP (1980) Models for turbulent flows with variable density and combustion. Hemispere Publishing Corp, United States

    Google Scholar 

  38. Morsi SA, Alexander AJ (1972) An investigation of particle trajectories in two-phase flow systems. J Fluid Mech 55(2):193–208. https://doi.org/10.1017/S0022112072001806

    Article  MATH  Google Scholar 

  39. ANSYS Inc. "ANSYS Fluent Theory Guide." Accessed.

  40. Clarke JT, Fox BR (1969) Rate and Heat of Vaporization of Graphite above 3000°K. J Chem Phys 51(8):3231–3240. https://doi.org/10.1063/1.1672500

    Article  Google Scholar 

  41. Marshall AL, Norton FJ (1933) "Vapor pressure and heat of vaporization of graphite." J Am Chem Soc 1:431–432. 1933/01/01. https://doi.org/10.1021/ja01328a513

  42. Pang X, Tian Y, Duan M, Zhai M (2013) "Preparation of low initial expansion temperature expandable graphite and its flame retardancy for LLDPE." Central Euro J Chem 11. 06/01/2013. https://doi.org/10.2478/s11532-013-0227-2

  43. Chung DDL (1987) Exfoliation of graphite. J Mater Sci 22:4190–4198

    Article  Google Scholar 

  44. Cai M, Thorpe D, Adamson DH, Schniepp HC (2012) Methods of graphite exfoliation. J Mater Chem 22:24992–25002

    Article  Google Scholar 

  45. McAllister MJ et al (2007) Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. Chem Mater 19:4396–4404

    Article  Google Scholar 

  46. Pang X, Tian Y, Duan M, Zhai M (2013) “Preparation of low initial expansion temperature expandable graphite and its flame retardancy for LLDPE,” (in English). Open Chem 11(6):953. https://doi.org/10.2478/s11532-013-0227-2

    Article  Google Scholar 

  47. Vovchenko LL, Matzui LY, Kulichenko AA (2007) "Thermal characterization of expanded graphite and its composites," Inorganic Mater 43(6):597–601. 2007/06/01. https://doi.org/10.1134/S0020168507060088

  48. Vafajoo L, Khorasheh F, Nakhjavani M, Fattahi M (2014) Kinetic parameters optimization and modeling of catalytic dehydrogenation of heavy paraffins to olefins. Pet Sci Technol 32(7):813–820

    Article  Google Scholar 

  49. Ni x, Zheng 2 (2020) "Extinguishment of sodium fires with Graphite@Stearate core-shell structured particles." Fire Safe J 111. https://doi.org/10.1016/j.firesaf.2019.102933

  50. Zhang T, Bi M, Jiang H, Gao W (2020) Suppression of aluminum dust explosions by expandable graphite. Powder Technol 366:52–62. https://doi.org/10.1016/j.powtec.2020.02.053

    Article  Google Scholar 

  51. Focke WW, Badenhorst H, Mhike W, Kruger HJ, Lombaard D (2014) "Characterization of commercial expandable graphite fire retardants." Thermochimica Acta 584:8–16. 2014/05/20. https://doi.org/10.1016/j.tca.2014.03.021

  52. DiNenno PJ (2008) "SFPE handbook of fire protection engineering.

  53. Staple W (1975) The influence of size distribution on the bulk density of uniformly packed glass particles. Soil Sci Soc Am J 39(3):404–408

    Article  Google Scholar 

  54. Samal P, Newkirk J (2015) "Powder metallurgy methods and applications," ASM handbook of powder metallurgy 7

  55. Zhang S (2017) "Relationship between particle size distribution and porosity in dump leaching." University of British Columbia.

  56. Robinson C, Smith DB (1984) "The auto-ignition temperature of methane." J Hazard Mater 8(3):199–203. 1984/01/01. https://doi.org/10.1016/0304-3894(84)85001-3

Download references

Acknowledgements

All financial and technical support are deeply appreciated by the authors. This research was sponsored by the Australian Research Council (ARC Industrial Transformation Training Centre IC170100032). The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Chun Yin Yuen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Cachinho Cordeiro, I.M., Liu, H., Yuen, A.C.Y. et al. Numerical investigation of expandable graphite suppression on metal-based fire. Heat Mass Transfer 58, 65–81 (2022). https://doi.org/10.1007/s00231-021-03097-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-021-03097-8

Navigation