Skip to main content
Log in

Wave-driven sediment mobility on the Eastern Brazilian shelf under different weather systems

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

On micro-tidal continental shelves, waves have been considered the main mechanism responsible for bottom sediment resuspension. In order to study the wave-driven sediment mobility under different weather systems on the Espírito Santo Continental Shelf, located on the Eastern Brazilian shelf, the wave-driven bottom shear stresses were compared to the critical bottom shear stress. While the first was calculated from results obtained by the SWAN wave model, the latter considered the heterogeneity of the sediment grain size. The results showed that waves driven by the local action of Transient Systems and waves driven by remote influence of these systems associated with the local influence of South Atlantic Subtropical Anticyclone are responsible for the highest percentages of sediment mobility on the shelf. These waves are characterized by mean wave direction from the south and southeast, with increased significant wave height and peak periods. Moreover, these waves were associated with higher bottom shear stresses than waves from north, northeast, and east (CM1 and CM4), with the highest differences occurring on the middle and outer shelf, mainly to the south of the Doce River mouth. The spatial distribution of the grain size also strongly influenced sediment mobility patterns, delimiting a less energetic region between the Espírito Santo Bay mouth and the Costa das Algas Marine Protected Area southern limit, and a more energetic region between Costa das Algas Marine Protected Area southern limit and the northern limit of the study area. The findings herein, besides providing information relevant to marine environment management, highlight the importance of including the grain size spatial heterogeneity in studies of sediment resuspension on continental shelves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Agnesi S, Annunziatellis A, Inghilesi R, Mο G, Orasi A (2020) The contribution of wind-wave energy at sea bottom to the modelling of rhodolith beds distribution in an off-shore continental shelf. Mediterr Mar Sci 21(2):433–441

    Google Scholar 

  • Bastos AC, Quaresma VS, Marangoni MB, D’agostini DP, Bourguignon SN, Cetto PH, Silva AE, Amado Filho GM, Moura RL, Collins M (2015) Shelf morphology as an indicator of sedimentary regimes: a synthesis from a mixed siliciclastic-carbonate shelf on the eastern Brazilian margin. J S Am Earth Sci 63:125–136

    Article  Google Scholar 

  • Bastos AC et al (2017) Monitoramento da influência da pluma do Rio Doce após o rompimento da barragem de rejeitos de Mariana/MG - Novembro de 2015: Processamento, Interpretação e Consolidação de Dados. Relatório de Pesquisa. Departamento de Oceanografia, Centro de Ciências Humanas e Naturais, Universidade Federal do Espírito Santo

  • Bosellini A, Ginsburg RN (1971) Form and internal structure of recent algal nodules (Rhodolites) from Bermuda. J Geol 79:669–682

    Article  Google Scholar 

  • Bourguignon SN, Bastos AC, Quaresma VS, Vieira FV, Pinheiro H, Amado-Filho GM, De Moura RL, Teixeira JB (2018) Seabed morphology and sedimentary regimes defining fishing grounds along the Eastern Brazilian shelf. Geosciences 8:91

    Article  Google Scholar 

  • Bourrin F, Friend PL, Amos CL, Manca E, Ulses C, Palanques A, De Madron XD, Thompson CEL (2008) Sediment dispersal from a typical Mediterranean flood: the Têt River, Gulf of Lion. Cont Shelf Res 28:1895–1910

    Article  Google Scholar 

  • Carvalho LMV, Jones C, Ambrizzi T (2005) Opposite phases of the Antarctic Oscillation and relationships with intraseasonal to interannual activity in the tropics during the Austral Summer. Journal of Climate 18:702–718

  • Cavalcanti IFA, Ferreira NJ, Dias MAF, Justi da Silva MGA (Orgs.) (2009) Tempo e Clima no Brasil. First edition, São Paulo: Oficina de textos

  • Creado ESJ, Helmreich S (2018) A wave of mud: the travel of toxic water, from Bento Rodrigues to the Brazilian Atlantic. Revista do Instituto de Estudos Brasileiros 69:33–51

  • Dalyander PS, Butman B (2015) Characteristics of storms driving wave-induced seafloor mobility on the U.S. East Coast continental shelf. Cont Shelf Res 104:1–14

    Article  Google Scholar 

  • Dalyander PS, Butman B, Sherwood CR, Signell RP, Wilkin JL (2013) Characterizing wave- and current- induced bottom shear stress: U.S. middle Atlantic continental shelf. Cont Shelf Res 52:73–86

    Article  Google Scholar 

  • Deltares (2014) Delft3D-WAVE: Simulation of short-crested waves with SWAN. User Manual. Hydro-Morphodynamics.ver 3.05, Delft: Deltares, 208

  • Deltares (2019) Delft3D-FLOW: Simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments. User Manual. Hydro-Morphodynamics. ver 3.15, Delft: Deltares, 682

  • Dereczynski CP, Lopes IR, Carvalho NO, Justi da Silva MGA, Grossmann KS, Parkinson R (2019) Climatology of Espírito Santo and the Northern Campos Basin, Offshore Southeast Brazil. Anuário do Instituto de Geociências - UFRJ 42(1):386–401

  • Dominguez JML (2004) The coastal zone of Brazil: an overview. J Coast Res SI39:16–20

  • Drake DE, Cacchione DA (1985) Seasonal variation in sediment transport on the Russian River shelf, California. Cont Shelf Res 4(5):495–514

    Article  Google Scholar 

  • Dufois F, Garreau P, Le Hir P, Forget P (2008) Wave- and current- induced bottom shear stress in the Gulf of Lions. Cont Shelf Res 28(15):1920–1934

    Article  Google Scholar 

  • Dumas C, Aubert D, Durrieu de Madron X, Ludwig W, Heussner S, Delsaut N, Menniti C, Sotin C, Buscail R (2014) Storm-Induced transfer of particulate trace metals to the deep-sea in the Gulf of Lion (NW Mediterranean Sea). Environ Geochem Health 36:995–1014

    Article  Google Scholar 

  • Erikson LiH, Storlazzi CD, Golden NE (2014) Modeling Wave and Seabed Energetics on the California Continental Shelf. Pamphlet to Accompany Data Set, U.S. Geological Survey: Santa Cruz, CA, USA

  • Fernandes LFLO, Paiva TRM, Longhini CM, Pereira JB, Ghisolfi RD, Lázaro GCS, Demoner LE, Laino PS, da Conceição LR, Sá F, Neto RR, Dias Junior C, Lemos KN, Quaresma VS, Oliveira KS, Grilo CF, Rocha GM (2020) Marine zooplankton dynamics after a major mining dam rupture in the Doce River, southeastern Brazil: Rapid response to a changing environment. Sci Total Environ 736:139621

    Article  Google Scholar 

  • Grabowski RC, Droppo IG, Wharton G (2011) Erodibility of cohesive sediment: The importance of sediment properties. Earth Sci Rev 105(3-4):101–120

    Article  Google Scholar 

  • Grifoll M, Gracia V, Fernandez J, Espino M (2013) Suspended sediment observations in the Barcelona inner-shelf during storms. In: Conley DC et al (eds) Proceedings 12th International Coastal Symposium. Plymouth, England, pp 1533–1538

  • Guillén J, Bourrin F, Palanques A, Durrieu de Madron X, Puig P, Buscail R (2006) Sediment dynamics during wet and dry storm events on the Têt inner shelf (SW Gulf of Lions). Mar Geol 234:129–142

    Article  Google Scholar 

  • Hatje H, Pedreira RMA, Rezende CE, Schettini CAF, Souza GC, Marin DC, Hackspacker PC (2017) The environmental impacts of one of the largest tailing dam failures worldwide. Sci Rep 7:10706

    Article  Google Scholar 

  • Herkul K (2010) Effect of physical disturbance and habitat-modifying species on sediment properties and benthic communities in the Northern Baltic Sea. (Ph.d. thesis), p 48

  • Hoeke RK, Storlazzi CD, Ridd PV (2013) Drivers of circulation in a fringing coral reef embayment: a wave-flow coupled numerical modeling study of Hanalei Bay, Hawaii. Cont Shelf Res 58:79–95

    Article  Google Scholar 

  • Holz V, Bahia R, Karez C, Vieira F, Moraes F, Vale N, Sudatti D, Salgado L, Moura R, Amado-Filho G, Bastos A (2020) Structure of Rhodolith beds and surrounding habitats at the Doce River Shelf (Brazil). Diversity 12(2):75

  • IBAMA - Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (2015) Laudo Técnico Preliminar: Impactos ambientais decorrentes do desastre envolvendo o rompimento da barragem de Fundão, em Mariana, Minas Gerais. Diretoria de Proteção Ambiental – DIPRO, 38

  • IHC - Instituto de Hidráulica Ambiental da Cantabria (2018) Projeto SMC-Brasil: níveis e cota de inundação: documento temático [recurso eletrônico]/Ministério do Meio Ambiente - MMA, Universidade Federal de Santa Catarina, Universidade de São Paulo – Brasília – DF: MMA

  • Jaffe BE, List JH, Sallenger AH Jr (1997) Massive sediment by passing on the lower shoreface offshore of a wide tidal inlet – Cat Island Pass, Louisiana. Mar Geol 136:131–149

    Article  Google Scholar 

  • Joshi S, Duffy GP, Brown C (2017) Mobility of maerl-siliciclastic mixtures: impact of waves, currents and storm events. Estuar Coast Shelf Sci 189:173–188

    Article  Google Scholar 

  • Lavenère-Wanderley AA, Siegle E (2019) Wave-induced sediment mobility on a morphologically complex continental shelf: eastern Brazilian shelf. Geo-Mar Lett 39:349–361

    Article  Google Scholar 

  • López L, Guillén J, Palanques A, Grifoll M (2017) Seasonal sediment dynamics on the Barcelona inner shelf (NW Mediterranean): a small Mediterranean river- and wave-dominated system. Cont Shelf Res 145:80–94

    Article  Google Scholar 

  • Mitchener H, Torfs H (1996) Erosion of mud/sand mixtures. Coast Eng 29:1–25

    Article  Google Scholar 

  • Moscon DM, Bastos AC (2010) Occurrence of storm-generated bedforms along the inner continental shelf e Southeastern Brazil. Braz J Oceanogr 58:45–56

    Article  Google Scholar 

  • Nittrouer CA, Austin JA, Field ME, Kravitz JH, Syvitski JPM, Wiberg PL (2007) Continental margin sedimentation: from sediment transport to sequence stratigraphy. Malden, MA; Oxford: Blackwell Pub. for the International Association of Sedimentologists

  • Nogueira ICM, Pereira HPP, Parente CE, Gallo MN (2015) Climatologia de Ondas da Bacia do Espírito Santo e parte norte da Bacia de Campos. Relatório Técnico - Fundação COPPETEC

  • Oberle FKJ, Storlazzi CD, Hanebuth TJJ (2014) Wave-driven sediment mobilization on a storm-controlled continental shelf (Northwest Iberia). J Mar Syst 139:362–372

    Article  Google Scholar 

  • Oliveira KSS, Quaresma VS (2018) Condições Típicas de vento sobre a região marinha adjacente à costa do Espírito Santo. Revista Brasileira de Climatologia 22:501–523

  • Palanques A, Lopez L, Guillén J, Puig P, Masqué P (2017) Decline of trace metal pollution in the bottom sediments of the Barcelona City continental shelf (NW Mediterranean). Sci Total Environ 579:755–767

    Article  Google Scholar 

  • Pereira J, Cirano M, Marta-Almeida M, Amorim FN (2013) A regional study of the Brazilian shelf/slope circulation (13°–31°S) using climatological open boundaries. Braz J Geol 31(2):289–305

  • Pianca C, Manzzini PLF, Siegle E (2010) Brazilian offshore wave climate based on NWW3 reanalysis. Braz J Oceanogr 58(1):53–70

    Article  Google Scholar 

  • Post AL, Wassenberg TJ, Passlow V (2006) Physical surrogates for macrofaunal distributions and abundance in a tropical gulf. Mar Freshw Res 57:469–483

    Article  Google Scholar 

  • Puig P, Palanques A, Guillén J (2001) Near-bottom suspended sediment variability caused by storms and near-inertial internal waves on the Ebro mid continental shelf (NW Mediterranean). Mar Geol 178:81–93

    Article  Google Scholar 

  • Quaresma VS, Catabriga GM, Bourguinon SC, Godinho E, Bastos AC (2015) Modern sedimentary processes along the Doce river adjacent continental shelf. Braz J Geol 45:635–644

    Article  Google Scholar 

  • Quaresma VS, Bastos AC, Leite MD, Costa A, Cagnin RC, Grilo CF, Zogheib LF, Oliveira KSS (2020) The effects of a tailing dam failure on the sedimentation of the eastern Brazilian inner shelf. Cont Shelf Res 205:104172

    Article  Google Scholar 

  • Queffeulou P, Croizé-Fillon D (2017) Global altimeter SWH data set – February 2017. 0,1 – 10. Available at: http://globwave.ifremer.fr/

  • Rodrigues R, Campos E, Haarsma R (2015) The impact of ENSO on the South Atlantic Subtropical Dipole Mode. J Clim 28(7):2691–2705

    Article  Google Scholar 

  • Roussiez V, Heussner S, Ludwig W, Radakovitch O, Durrieu de Madron X, Guieu C, Probst JL, Monaco A, Delsaut N (2012) Impact of oceanic floods on particulate metal inputs to coastal and deep-sea environments: a case study in the NW Mediterranean Sea. Cont Shelf Res 45:15–26

    Article  Google Scholar 

  • RRDM – Rede Rio Doce Mar. Anexo 3 – Análise abiótica e biótica no Ambiente Marinho Discussão Integrada. RT-19K, Programa de Monitoramento da Biodiversidade Aquática, Fundação Espírito – Santense de Tecnologia, 57 p. 2019a.

  • RRDM – Rede Rio Doce Mar. Integração da Biodiversidade Marinha. RT-30, Programa de Monitoramento da Biodiversidade Aquática, Fundação Espírito – Santense de Tecnologia, 36 p. 2019b.

  • Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, Hou YT, Chuang HY, Iredell M, Ek M, Meng J, Yang R, Mendez MP, van den Dool H, Zhang Q, Wang W, Chen M, Becker E (2014) The NCEP Climate Forecast System Version 2. J Clim 27:2185–2208

    Article  Google Scholar 

  • Satyamurty P, Nobre CA, Silva Dias PL (1998) South America. In: Karoly DJ, Vincent DG (eds) Meteorology of the Southern Hemisphere. Meteorological Monographs. American Meteorological Society, Boston, MA

  • Simarro G, Guillén J, Puig P, Ribó M, LoIacono C, Palanques A, Muñoz A, Durán R, Acosta J (2015) Sediment dynamics over sand ridges on a tideless mid-outer continental shelf. Mar Geol 361:25–40

    Article  Google Scholar 

  • Storlazzi CD, Reid JA (2010) The influence of El Niño - Southern Oscillation (ENSO) cycles on wave - driven sea-floor sediment mobility along the central California continental margin. Cont Shelf Res 30:1582–1599

    Article  Google Scholar 

  • Sun X, Cook K, Vizy E (2017) The South Atlantic subtropical high: climatology and interannual variability. J Clim 30(9):3279–3296

    Article  Google Scholar 

  • Tolman HL (2014) User Manual and System Documentation of WAVEWATCHIII version 4.18. U. S. Department of Commerce. National Oceanic and Atmospheric Administration. National Weather Service. National Centers for Environmental Prediction. Technical Note

  • Van Prooijen BC, Winterwerp JC (2010) A stochastic formulation for erosion of cohesive sediments. J Geophys Res 115

  • Van Rijn LC (1993) Principles of sediment transport in rivers, estuaries, and coastal seas, Aqua Publications, The Netherlands

  • Van Rijn LC (2007) Unified view of sediment transport by currents and waves. I: Initiation of motion, bed roughness, and bed-load transport. J Hydraul Eng 133(6):649–667

    Article  Google Scholar 

  • Venegas SA, Mysak LA, Straub D (1997) Atmosphere-ocean coupled variability in The South Atlantic. J Clim 10:2904–2920

    Article  Google Scholar 

  • Vieira FV, Bastos AB, Quaresma VS, Leite MD, Costa AJ, Oliveira KSS, Dalvi CF, Bahia RG, Holz VL, Moura RL, Amado Filho GM (2019) Along-shelf changes in mixed carbonate-siliciclastic sedimentation patterns. Continental Shelf Research 187:103964

  • Vitorino J, Oliveira A, Joanneau JM, Drago T (2002) Winter dynamics on the northern Portuguese shelf. Part 1: physical processes. Prog Oceanogr 52:129–153

    Article  Google Scholar 

  • Warner JC, Armstrong B, Sylvester CS, Voulgaris G, Nelson T, Schwab WC, Denny JF (2012) Storm-induced inner-continental shelf circulation and sediment transport: Long Bay, South Carolina. Cont Shelf Res 42:51–63

    Article  Google Scholar 

  • Williams JJ, Bell PS, Thorne PD, Metje N, Coates LE (2004) Measurement and prediction of wave-generated suborbital ripples. J Geophys Res 109

  • Winterwerp JC, van Kesteren WGM, van Prooijen B, Jacobs W (2012) A conceptual framework for shear flow–induced erosion of soft cohesive sediment beds. J Geophys Res 117(C10):1–17

Download references

Acknowledgements

The authors would like to thank the Oceanographic Instrumentation Laboratory (LIOc-COPPE) for providing the computational infrastructure for carrying out some of the simulations.

Code availability

Not applicable.

Funding

The first, third, and fourth authors were financially supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). The research was financially supported by FAPES (N° 014-2013/PPE - Gerenciamento Costeiro/PELD-Abrolhos) and FAPES/VALE/FAPERJ (N° 01/2015 - Pelotização, Meio Ambiente e Logística).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyssyanne Samihra Santos Oliveira.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

All authors confirm that this work is original and has not been published elsewhere nor it is currently under consideration for publication elsewhere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, K.S.S., da Silva Quaresma, V., Nogueira, I.C.M. et al. Wave-driven sediment mobility on the Eastern Brazilian shelf under different weather systems. Geo-Mar Lett 41, 28 (2021). https://doi.org/10.1007/s00367-021-00699-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00367-021-00699-3

Keywords

Navigation