1932

Abstract

Pollen-pistil interactions serve as important prezygotic reproductive barriers that play a critical role in mate selection in plants. Here, we highlight recent progress toward understanding the molecular basis of pollen-pistil interactions as reproductive isolating barriers. These barriers can be active systems of pollen rejection, or they can result from a mismatch of required male and female factors. In some cases, the barriers are mechanistically linked to self-incompatibility systems, while others represent completely independent processes. Pollen-pistil reproductive barriers can act as soon as pollen is deposited on a stigma, where penetration of heterospecific pollen tubes is blocked by the stigma papillae. As pollen tubes extend, the female transmitting tissue can selectively limit growth by producing cell wall–modifying enzymes and cytotoxins that interact with the growing pollen tube. At ovules, differential pollen tube attraction and inhibition of sperm cell release can act as barriers to heterospecific pollen tubes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-080620-102159
2021-06-17
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/arplant/72/1/annurev-arplant-080620-102159.html?itemId=/content/journals/10.1146/annurev-arplant-080620-102159&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adhikari PB, Liu X, Wu X, Zhu S, Kasahara RD 2020. Fertilization in flowering plants: an odyssey of sperm cell delivery. Plant Mol. Biol. 103:9–32
    [Google Scholar]
  2. 2. 
    Allen AM, Hiscock SJ. 2008. Evolution and phylogeny of self-incompatibility systems in angiosperms. Self-Incompatibility in Flowering Plants: Evolution, Diversity, and Mechanisms VE Franklin-Tong 73–101 Berlin: Springer-Verlag
    [Google Scholar]
  3. 3. 
    Alves CML, Noyszewski AK, Smith AG 2019. Structure and function of class III pistil-specific extensin-like protein in interspecific reproductive barriers. BMC Plant Biol. 19:118
    [Google Scholar]
  4. 4. 
    Amien S, Kliwer I, Marton ML, Debener T, Geiger D et al. 2010. Defensin-like ZmES4 mediates pollen tube burst in maize via opening of the potassium channel KZM1. PLOS Biol. 8:e1000388
    [Google Scholar]
  5. 5. 
    Anderson MA, Cornish EC, Mau S-L, Williams EG, Hoggart R et al. 1986. Cloning of cDNA for a stylar glycoprotein associated with expression of self-incompatibility in Nicotianaalata. Nature 321:38–44
    [Google Scholar]
  6. 6. 
    Ashman TL, Arceo-Gomez G. 2013. Toward a predictive understanding of the fitness costs of heterospecific pollen receipt and its importance in co-flowering communities. Am. J. Bot. 100:1061–70Presents a framework to predict how HP receipt can impact female fitness and drive speciation.
    [Google Scholar]
  7. 7. 
    Baack E, Melo MC, Rieseberg LH, Ortiz-Barrientos D 2015. The origins of reproductive isolation in plants. New Phytol. 207:968–84
    [Google Scholar]
  8. 8. 
    Baek YS, Covey PA, Petersen JJ, Chetelat RT, McClure B, Bedinger PA 2015. Testing the SI × SC rule: pollen. pistil interactions in interspecific crosses between members of the tomato clade (Solanum section Lycopersicon, Solanaceae). Am. J. Bot. 102:302–11
    [Google Scholar]
  9. 9. 
    Baek YS, Royer SM, Broz AK, Covey PA, Lopez-Casado G et al. 2016. Interspecific reproductive barriers between sympatric populations of wild tomato species (Solanum section Lycopersicon). Am. J. Bot. 103:1964–78
    [Google Scholar]
  10. 10. 
    Bedinger PA, Broz AK, Tovar-Mendez A, McClure B 2017. Pollen-pistil interactions and their role in mate selection. Plant Physiol. 173:79–90Provides evidence for S-RNase-based self-incompatibility architecture and stepwise mutational losses that affect RI.
    [Google Scholar]
  11. 11. 
    Bernacchi D, Tanksley SD. 1997. An interspecific backcross of Lycopersiconesculentum × L.hirsutum: linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics 147:861–77
    [Google Scholar]
  12. 12. 
    Bomblies K. 2010. Doomed lovers: mechanisms of isolation and incompatibility in plants. Annu. Rev. Plant Biol. 61:109–24
    [Google Scholar]
  13. 13. 
    Bosch M, Hepler PK. 2005. Pectin methylesterases and pectin dynamics in pollen tubes. Plant Cell 17:3219–26
    [Google Scholar]
  14. 14. 
    Brandvain Y, Haig D. 2005. Divergent mating systems and parental conflict as a barrier to hybridization in flowering plants. Am. Nat. 166:330–38
    [Google Scholar]
  15. 15. 
    Brosi BJ. 2016. Pollinator specialization: from the individual to the community. New Phytol. 210:1190–94
    [Google Scholar]
  16. 16. 
    Broz AK, Randle AM, Sianta SA, Tovar-Mendez A, McClure B, Bedinger PA 2017. Mating system transitions in Solanumhabrochaites impact interactions between populations and species. New Phytol. 213:440–54
    [Google Scholar]
  17. 17. 
    Burton RS, Pereira RJ, Barreto FS 2013. Cytonuclear genomic interactions and hybrid breakdown. Annu. Rev. Ecol. Evol. Syst. 44:281–302
    [Google Scholar]
  18. 18. 
    Callaway TD, Singh-Cundy A. 2019. HD-AGPs as speciation genes: positive selection on a proline-rich domain in non-hybridizing species of Petunia, Solanum, and Nicotiana. Plants 8:211
    [Google Scholar]
  19. 19. 
    Camadro EL, Erazzú LE, Maune JF, Bedogni MC 2012. A genetic approach to the species problem in wild potato. Plant Biol. 14:543–54
    [Google Scholar]
  20. 20. 
    Camadro EL, Peloquin SJ. 1981. Cross-incompatibility between two sympatric polyploid Solanum species. Theor. Appl. Genet. 60:65–70
    [Google Scholar]
  21. 21. 
    Chae K, Lord EM. 2011. Pollen tube growth and guidance: roles of small, secreted proteins. Ann. Bot. 108:627–36
    [Google Scholar]
  22. 22. 
    Chalivendra SC, Lopez-Casado G, Kumar A, Kassenbrock AR, Royer S et al. 2013. Developmental onset of reproductive barriers and associated proteome changes in stigma/styles of Solanumpennellii. J. Exp. Bot. 64:265–79
    [Google Scholar]
  23. 23. 
    Chantha SC, Herman AC, Platts AE, Vekemans X, Schoen DJ 2013. Secondary evolution of a self-incompatibility locus in the Brassicaceae genus Leavenworthia. PLOS Biol. 11:e1001560
    [Google Scholar]
  24. 24. 
    Chen X, Hao S, Wang L, Fang W, Wang Y, Li X 2012. Late-acting self-incompatibility in tea plant (Camelliasinensis). Biologia 67:347–51
    [Google Scholar]
  25. 25. 
    Chetelat RT, DeVerna JW. 1991. Expression of unilateral incompatibility in pollen of Lycopersiconpennellii is determined by major loci on chromosomes 1, 6 and 10. Theor. Appl. Genet. 82:704–12
    [Google Scholar]
  26. 26. 
    Coyne JA, Orr HA. 2004. Speciation. Sunderland, MA: Sinauer Assoc.
    [Google Scholar]
  27. 27. 
    Cruz-Garcia F, Hancock CN, Kim D, McClure B 2005. Stylar glycoproteins bind to S-RNase in vitro. Plant J. 42:295–304
    [Google Scholar]
  28. 28. 
    de Nettancourt D. 1977. Incompatibility in Angiosperms Berlin: Springer-Verlag
  29. 29. 
    Dickinson H. 1995. Dry stigmas, water and self-incompatibility in Brassica. Sex. Plant Reprod 8:1–10
    [Google Scholar]
  30. 30. 
    Do Canto J, Studer B, Frei U, Lubberstedt T 2018. Fine mapping a self-fertility locus in perennial ryegrass. Theor. Appl. Genet. 131:817–27
    [Google Scholar]
  31. 31. 
    Dobzhansky T. 1937. Genetics and the Origin of Species New York: Columbia Univ. Press
  32. 32. 
    Eberle CA, Anderson NO, Clasen BM, Hegeman AD, Smith AG 2013. PELPIII: The class III pistil-specific extensin-like Nicotianatabacum proteins are essential for interspecific incompatibility. Plant J. 74:805–14
    [Google Scholar]
  33. 33. 
    Edlund AF, Swanson R, Preuss D 2004. Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16:Suppl. 1S84–97
    [Google Scholar]
  34. 34. 
    Endress PK. 2011. Angiosperm ovules: diversity, development, evolution. Ann. Bot. 107:1465–89
    [Google Scholar]
  35. 35. 
    Esau K. 1977. Anatomy of Seed Plants New York: Wiley. 2nd ed.
  36. 36. 
    Escobar-Restrepo JM, Huck N, Kessler S, Gagliardini V, Gheyselinck J et al. 2007. The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science 317:656–60
    [Google Scholar]
  37. 37. 
    Fishman L, Sweigart AL. 2018. When two rights make a wrong: the evolutionary genetics of plant hybrid incompatibilities. Annu. Rev. Plant Biol. 69:707–31
    [Google Scholar]
  38. 38. 
    Franklin-Tong VE. 2008. Self-incompatibility in Papaverrhoeas: progress in understanding mechanisms involved in regulating self-incompatibility in Papaver. Self-Incompatibility in Flowering Plants: Evolution, Diversity, and Mechanisms VE Franklin-Tong 237–58 Berlin: Springer-Verlag
    [Google Scholar]
  39. 39. 
    Fujii S, Kubo K, Takayama S 2016. Non-self- and self-recognition models in plant self-incompatibility. Nat. Plants 2:16130
    [Google Scholar]
  40. 40. 
    Fujii S, Tsuchimatsu T, Kimura Y, Ishida S, Tangpranomkorn S et al. 2019. A stigmatic gene confers interspecies incompatibility in the Brassicaceae. Nat. Plants 5:731–41Identifies the first stigma-specific factor involved in interspecific pollen rejection.
    [Google Scholar]
  41. 41. 
    Gasser CS, Skinner DJ. 2019. Development and evolution of the unique ovules of flowering plants. Curr. Top. Dev. Biol. 131:373–99
    [Google Scholar]
  42. 42. 
    Gaudinier A, Blackman BK. 2020. Evolutionary processes from the perspective of flowering time diversity. New. Phytol. 225:1883–98
    [Google Scholar]
  43. 43. 
    Ge ZX, Bergonci T, Zhao YL, Zou YJ, Du S et al. 2017. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science 358:1596–600
    [Google Scholar]
  44. 44. 
    Gherardini GL, Healey PL. 1969. Dissolution of outer wall of pollen grain during pollination. Nature 224:718–19
    [Google Scholar]
  45. 45. 
    Gibbs PE. 2014. Late-acting self-incompatibility–the pariah breeding system in flowering plants. New Phytol. 203:717–34
    [Google Scholar]
  46. 46. 
    Goring DR. 2018. Exocyst, exosomes, and autophagy in the regulation of Brassicaceae pollen-stigma interactions. J. Exp. Bot. 69:69–78
    [Google Scholar]
  47. 47. 
    Gotelli MM, Lattar EC, Zini LM, Galati BG 2017. Style morphology and pollen tube pathway. Plant Reprod. 30:155–70
    [Google Scholar]
  48. 48. 
    Grebnev G, Ntefidou M, Kost B 2017. Secretion and endocytosis in pollen tubes: models of tip growth in the spot light. Front. Plant Sci. 8:154
    [Google Scholar]
  49. 49. 
    Greyson RI. 1994. The Development of Flowers. New York: Oxford Univ. Press
    [Google Scholar]
  50. 50. 
    Hamlin JAP, Sherman NA, Moyle LC 2017. Two loci contribute epistastically to heterospecific pollen rejection, a postmating isolating barrier between species. G3 7:2151–59
    [Google Scholar]
  51. 51. 
    Hepler PK, Rounds CM, Winship LJ 2013. Control of cell wall extensibility during pollen tube growth. Mol. Plant 6:998–1017
    [Google Scholar]
  52. 52. 
    Heslop-Harrison J. 1982. Pollen-stigma interaction and cross incompatibility in the grasses. Science 215:1358–64
    [Google Scholar]
  53. 53. 
    Heslop-Harrison Y. 2000. Control gates and micro-ecology: the pollen stigma interaction in perspective. Ann. Bot. 85:5–13
    [Google Scholar]
  54. 54. 
    Heslop-Harrison Y, Shivanna KR. 1977. The receptive surface of the angiosperm stigma. Ann. Bot. 41:1233–58
    [Google Scholar]
  55. 55. 
    Higashiyama T, Inatsugi R, Sakamoto S, Sasaki N, Mori T et al. 2006. Species preferentiality of the pollen tube attractant derived from the synergid cell of Toreniafournieri. Plant Physiol. 142:481–91
    [Google Scholar]
  56. 56. 
    Higashiyama T, Kuroiwa H, Kawano S, Kuroiwa T 1998. Guidance in vitro of the pollen tube to the naked embryo sac of Toreniafournieri. Plant Cell 10:2019–31
    [Google Scholar]
  57. 57. 
    Higashiyama T, Kuroiwa H, Kawano S, Kuroiwa T 2000. Explosive discharge of pollen tube contents in Toreniafournieri. Plant Physiol. 122:11–14
    [Google Scholar]
  58. 58. 
    Higashiyama T, Yabe S, Sasaki N, Nishimura Y, Miyagishima S et al. 2001. Pollen tube attraction by the synergid cell. Science 293:1480–83
    [Google Scholar]
  59. 59. 
    Hiscock SJ, Dickinson HG. 1993. Unilateral incompatibility within the Brassicaceae: further evidence for the involvement of the self-incompatibility (S)-locus. Theor. Appl. Genet. 86:744–53
    [Google Scholar]
  60. 60. 
    Hogenboom NG. 1975. Incompatibility and incongruity: two different mechanisms for the non-functioning of intimate partner relationships. Proc. R. Soc. B 188:361–75
    [Google Scholar]
  61. 61. 
    Hülskamp M, Kopczak SD, Horejsi TF, Kihl BK, Pruitt RE 1995. Identification of genes required for pollen-stigma recognition in Arabidopsis thaliana. Plant J. 8:703–14
    [Google Scholar]
  62. 62. 
    Jany E, Nelles H, Goring DR 2019. The molecular and cellular regulation of Brassicaceae self-incompatibility and self-pollen rejection. Int. Rev. Cell Mol. Biol. 343:1–35
    [Google Scholar]
  63. 63. 
    Johnson MA, Harper JF, Palanivelu R 2019. A fruitful journey: pollen tube navigation from germination to fertilization. Annu. Rev. Plant Biol. 70:809–37
    [Google Scholar]
  64. 64. 
    Kanaoka MM, Kawano N, Matsubara Y, Susaki D, Okuda S et al. 2011. Identification and characterization of TcCRP1, a pollen tube attractant from Toreniaconcolor. Ann. Bot. 108:739–47
    [Google Scholar]
  65. 65. 
    Kandasamy MK, Nasrallah JB, Nasrallah ME 1994. Pollen-pistil interactions and developmental regulation of pollen tube growth in Arabidopsis. Development 120:3405–18
    [Google Scholar]
  66. 66. 
    Kay KM. 2006. Reproductive isolation between two closely related hummingbird-pollinated neotropical gingers. Evolution 60:538–52
    [Google Scholar]
  67. 67. 
    Kay KM, Sargent RD. 2009. The role of animal pollination in plant speciation: integrating ecology, geography, and genetics. Annu. Rev. Ecol. Evol. Syst. 40:637–56
    [Google Scholar]
  68. 68. 
    Kermicle JL, Evans MMS. 2005. Pollen-pistil barriers to crossing in maize and teosinte result from incongruity rather than active rejection. Sex. Plant Reprod. 18:187–94
    [Google Scholar]
  69. 69. 
    Kitashiba H, Nasrallah JB. 2014. Self-incompatibility in Brassicaceae crops: lessons for interspecific incompatibility. Breed. Sci. 64:23–37
    [Google Scholar]
  70. 70. 
    Klaas M, Yang B, Bosch M, Thorogood D, Manzanares C et al. 2011. Progress towards elucidating the mechanisms of self-incompatibility in the grasses: further insights from studies in Lolium. Ann. Bot. 108:677–85
    [Google Scholar]
  71. 71. 
    Knox R, Gaget M, Dumas C 1987. Mentor pollen techniques. Int. Rev. Cyt. 107:315–32
    [Google Scholar]
  72. 72. 
    Kubo KI, Entani T, Takara A, Wang N, Fields AM et al. 2010. Collaborative non-self recognition system in S-RNase-based self-incompatibility. Science 330:796–99
    [Google Scholar]
  73. 73. 
    Lafon-Placette C, Kohler C. 2016. Endosperm-based postzygotic hybridization barriers: developmental mechanisms and evolutionary drivers. Mol. Ecol. 25:2620–29
    [Google Scholar]
  74. 74. 
    Lanaud C, Fouet O, Legavre T, Lopes U, Sounigo O et al. 2017. Deciphering the Theobromacacao self-incompatibility system: from genomics to diagnostic markers for self-compatibility. J. Exp. Bot. 68:4775–90
    [Google Scholar]
  75. 75. 
    Lausser A, Kliwer I, Srilunchang K-O, Dresselhaus T 2010. Sporophytic control of pollen tube growth and guidance in maize. J. Exp. Bot. 61:673–82
    [Google Scholar]
  76. 76. 
    Lewis D, Crowe LK. 1958. Unilateral interspecific incompatibility in flowering plants. Heredity 12:233–56
    [Google Scholar]
  77. 77. 
    Li L, Liu B, Deng X, Zhao H, Li H et al. 2018. Evolution of interspecies unilateral incompatibility in the relatives of Arabidopsis thaliana. Mol. Ecol. 27:2742–53
    [Google Scholar]
  78. 78. 
    Li W, Chetelat RT. 2010. A pollen factor linking inter- and intraspecific pollen rejection in tomato. Science 330:1827–30
    [Google Scholar]
  79. 79. 
    Li W, Chetelat RT. 2014. The role of a pollen-expressed Cullin1 protein in gametophytic self-incompatibility in Solanum. Genetics 196:439–42
    [Google Scholar]
  80. 80. 
    Li W, Chetelat RT. 2015. Unilateral incompatibility gene ui1.1 encodes an S-locus F-box protein expressed in pollen of Solanum species. PNAS 112:4417–22
    [Google Scholar]
  81. 81. 
    Liang M, Cao ZH, Zhu AD, Liu YL, Tao MQ et al. 2020. Evolution of self-compatibility by a mutant Sm-RNase in citrus. Nat. Plants 6:131–42
    [Google Scholar]
  82. 82. 
    Lin Z, Eaves DJ, Sanchez-Moran E, Franklin FCH, Franklin-Tong VE 2015. The PapaverrhoeasS determinants confer self-incompatibility to Arabidopsis thaliana in planta. Science 350:684–87
    [Google Scholar]
  83. 83. 
    Lind JL, Bönig I, Clarke AE, Anderson MA 1996. A style-specific 120 kDa glycoprotein enters pollen tubes of Nicotianaalata in vivo. Sex. Plant Reprod. 9:75–86
    [Google Scholar]
  84. 84. 
    Lopes AL, Moreira D, Ferreira MJ, Pereira AM, Coimbra S 2019. Insights into secrets along the pollen tube pathway in need to be discovered. J. Exp. Bot. 70:2979–92
    [Google Scholar]
  85. 85. 
    Lora J, Hormaza JI, Herrero M 2016. The diversity of the pollen tube pathway in plants: toward an increasing control by the sporophyte. Front. Plant Sci. 7:107
    [Google Scholar]
  86. 86. 
    Lowry DB, Modliszewski JL, Wright KM, Wu CA, Willis JH 2008. The strength and genetic basis of reproductive isolating barriers in flowering plants. Philos. Trans. R. Soc. B 363:3009–21
    [Google Scholar]
  87. 87. 
    Lu Y, Hokin SA, Kermicle JL, Hartwig T, Evans MMS 2019. A pistil-expressed pectin methylesterase confers cross-incompatibility between strains of Zeamays. Nat. Commun. 10:2304 Characterizes a stigma-expressed PME that is critical for interpopulation barriers in maize.
    [Google Scholar]
  88. 88. 
    Lu YX, Kermicle JL, Evans MMS 2014. Genetic and cellular analysis of cross-incompatibility in Zeamays. Plant Reprod. 27:19–29
    [Google Scholar]
  89. 89. 
    Ma JF, Liu ZH, Chu CP, Hu ZY, Wang XL, Zhang XS 2012. Different regulatory processes control pollen hydration and germination in Arabidopsis. Sex. Plant Reprod. 25:77–82
    [Google Scholar]
  90. 90. 
    Manzanares C, Barth S, Thorogood D, Byrne SL, Yates S et al. 2016. A gene encoding a DUF247 domain protein cosegregates with the S self-incompatibility locus in perennial ryegrass. Mol. Biol. Evol. 33:870–84
    [Google Scholar]
  91. 91. 
    Markova DN, Petersen JJ, Qin XQ, Short DR, Valle MJ et al. 2016. Mutations in two pollen self-incompatibility factors in geographically marginal populations of Solanumhabrochaites impact mating system transitions and reproductive isolation. Am. J. Bot. 103:1847–61
    [Google Scholar]
  92. 92. 
    Markova DN, Petersen JJ, Yam SE, Corral A, Valle MJ et al. 2017. Evolutionary history of two pollen self-incompatibility factors reveals alternate routes to self-compatibility within Solanum. Am. J. Bot 104:1904–19
    [Google Scholar]
  93. 93. 
    Martin NH, Willis JH. 2007. Ecological divergence associated with mating system causes nearly complete reproductive isolation between sympatric Mimulus species. Evolution 61:68–82
    [Google Scholar]
  94. 94. 
    Márton ML, Cordts S, Broadhvest J, Dresselhaus T 2005. Micropylar pollen tube guidance by egg apparatus 1 of maize. Science 307:573–76
    [Google Scholar]
  95. 95. 
    Márton ML, Fastner A, Uebler S, Dresselhaus T 2012. Overcoming hybridization barriers by the secretion of the maize pollen tube attractant ZmEA1 from Arabidopsis ovules. Curr. Biol. 22:1194–98
    [Google Scholar]
  96. 96. 
    Maune JF, Camadro EL, Erazzú LE 2017. Cross-incompatibility and self-incompatibility: unrelated phenomena in wild and cultivated potatoes. ? Botany 96:33–45
    [Google Scholar]
  97. 97. 
    Mayr E. 1942. Systematics and the Origin of Species New York: Columbia Univ. Press
  98. 98. 
    Mecchia MA, Santos-Fernandez G, Duss NN, Somoza SC, Boisson-Dernier A et al. 2017. RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis. Science 358:1600–3
    [Google Scholar]
  99. 99. 
    Melo MC, Grealy A, Brittain B, Walter GM, Ortiz-Barrientos D 2014. Strong extrinsic reproductive isolation between parapatric populations of an Australian groundsel. New Phytol. 203:323–34
    [Google Scholar]
  100. 100. 
    Morales CL, Traveset A. 2008. Interspecific pollen transfer: magnitude, prevalence and consequences for plant fitness. Crit. Rev. Plant Sci. 27:221–38
    [Google Scholar]
  101. 101. 
    Moran Lauter AN, Muszynski MG, Huffman RD, Scott MP 2017. A pectin methylesterase ZmPme3 is expressed in Gametophyte factor1-s (Ga1-s) silks and maps to that locus in maize (Zea mays L.). Front. Plant Sci. 8:1926
    [Google Scholar]
  102. 102. 
    Moreira-Hernández JI, Muchhala N. 2019. Importance of pollinator-mediated interspecific pollen transfer for angiosperm evolution. Annu. Rev. Ecol. Evol. Syst. 50:191–217
    [Google Scholar]
  103. 103. 
    Muller LM, Lindner H, Pires ND, Gagliardini V, Grossniklaus U 2016. A subunit of the oligosaccharyltransferase complex is required for interspecific gametophyte recognition in Arabidopsis. Nat. Commun. 7:10826
    [Google Scholar]
  104. 104. 
    Murfett JM, Strabala TJ, Zurek DM, Mou B, Beecher B, McClure BA 1996. S RNase and interspecific pollen rejection in the genus Nicotiana: Multiple pollen rejection pathways contribute to unilateral incompatibility between self-incompatible and self-compatible species. Plant Cell 8:943–58
    [Google Scholar]
  105. 105. 
    Nasrallah JB. 2002. Recognition and rejection of self in plant reproduction. Science 296:305–8
    [Google Scholar]
  106. 106. 
    Nasrallah JB. 2017. Plant mating systems: self-incompatibility and evolutionary transitions to self-fertility in the mustard family. Curr. Opin. Genet. Dev. 47:54–60
    [Google Scholar]
  107. 107. 
    Nasrallah JB. 2019. Self-incompatibility in the Brassicaceae: regulation and mechanism of self-recognition. Curr. Top. Dev. Biol. 131:435–52
    [Google Scholar]
  108. 108. 
    Nasrallah ME, Liu P, Nasrallah JB 2002. Generation of self-incompatible Arabidopsis thaliana by transfer of two S locus genes from A. lyrata. Science 297:247–49
    [Google Scholar]
  109. 109. 
    Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H et al. 2009. Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357–61Identifies LURE genes using isolated synergids and shows LURE peptide activity in pollen tube attraction.
    [Google Scholar]
  110. 110. 
    Ornduff R. 1969. Reproductive biology in relation to angiosperm systematics. Taxon 18:121–33
    [Google Scholar]
  111. 111. 
    Ouyang Y, Zhang Q. 2013. Understanding reproductive isolation based on the rice model. Annu. Rev. Plant Biol. 64:111–35
    [Google Scholar]
  112. 112. 
    Pacini E. 2000. From anther and pollen ripening to pollen presentation. Plant Syst. Evol. 222:19–43
    [Google Scholar]
  113. 113. 
    Pacini E, Hesse M. 2005. Pollenkitt—its composition, forms and functions. Flora 200:399–415
    [Google Scholar]
  114. 114. 
    Pandey KK. 1981. Evolution of unilateral incompatibility in flowering plants: further evidence in favour of twin specificities controlling intra- and interspecific incompatibility. New Phytol. 89:705–28
    [Google Scholar]
  115. 115. 
    Qin X, Li W, Liu Y, Tan M, Ganal M, Chetelat RT 2018. A farnesyl pyrophosphate synthase gene expressed in pollen functions in S-RNase-independent unilateral incompatibility. Plant J. 93:417–30Identifies and functionally tests a pollen UI factor that is not associated with self-incompatibility.
    [Google Scholar]
  116. 116. 
    Qin Y, Leydon AR, Manziello A, Pandey R, Mount D et al. 2009. Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLOS Genet.5:e1000621
    [Google Scholar]
  117. 117. 
    Quilichini TD, Grienenberger E, Douglas CJ 2015. The biosynthesis, composition and assembly of the outer pollen wall: a tough case to crack. Phytochemistry 113:170–82
    [Google Scholar]
  118. 118. 
    Randle AM, Slyder JB, Kalisz S 2009. Can differences in autonomous selfing ability explain differences in range size among sister-taxa pairs of Collinsia (Plantaginaceae)? An extension of Baker's Law. New Phytol. 183:618–29
    [Google Scholar]
  119. 119. 
    Reimann R, Kah D, Mark C, Dettmer J, Reimann TM et al. 2020. Durotropic growth of pollen tubes. Plant Physiol. 183:558–69Characterizes differential (durotropic) growth of pollen tubes in different environments.
    [Google Scholar]
  120. 120. 
    Rejon JD, Delalande F, Schaeffer-Reiss C, Alche JD, Rodriguez-Garcia MI et al. 2016. The pollen coat proteome: at the cutting edge of plant reproduction. Proteomes 4:5
    [Google Scholar]
  121. 121. 
    Rieseberg LH. 2001. Chromosomal rearrangements and speciation. Trends Ecol. Evol. 16:351–58
    [Google Scholar]
  122. 122. 
    Rieseberg LH, Willis JH. 2007. Plant speciation. Science 317:910–14
    [Google Scholar]
  123. 123. 
    Sampson DR. 1962. Intergeneric pollen-stigma incompatibility in the Cruciferae. Can. J. Genet. Cytol. 4:38–49
    [Google Scholar]
  124. 124. 
    Schemske DW. 2010. Adaptation and the origin of species. Am. Nat. 176:Suppl. 1S4–25
    [Google Scholar]
  125. 125. 
    Simpson MG. 2010. Plant embryology. Plant Systematics545–60 Amsterdam: Elsevier/Academic. , 2nd ed. .
    [Google Scholar]
  126. 126. 
    Sobel JM, Chen GF. 2014. Unification of methods for estimating the strength of reproductive isolation. Evolution 68:1511–22
    [Google Scholar]
  127. 127. 
    Takada Y, Murase K, Shimosato-Asano H, Sato T, Nakanishi H et al. 2017. Duplicated pollen-pistil recognition loci control intraspecific unilateral incompatibility in Brassicarapa. Nat. Plants 3:17096
    [Google Scholar]
  128. 128. 
    Takayama S, Isogai A. 2005. Self-incompatibility in plants. Annu. Rev. Plant Biol. 56:467–89
    [Google Scholar]
  129. 129. 
    Takayama S, Shiba H, Iwano M, Asano K, Hara M et al. 2000. Isolation and characterization of pollen coat proteins of Brassica campestris that interact with S locus-related glycoprotein 1 involved in pollen-stigma adhesion. PNAS 97:3765–70
    [Google Scholar]
  130. 130. 
    Takeuchi H, Higashiyama T. 2012. A species-specific cluster of defensin-like genes encodes diffusible pollen tube attractants in Arabidopsis. PLOS Biol. 10:e1001449
    [Google Scholar]
  131. 131. 
    Takeuchi H, Higashiyama T. 2016. Tip-localized receptors control pollen tube growth and LURE sensing in Arabidopsis. Nature 531:245–48
    [Google Scholar]
  132. 132. 
    Thorogood D, Yates S, Manzanares C, Skot L, Hegarty M et al. 2017. A novel multivariate approach to phenotyping and association mapping of multi-locus gametophytic self-incompatibility reveals S, Z, and other loci in a perennial ryegrass (Poaceae) population. Front. Plant Sci. 8:1331
    [Google Scholar]
  133. 133. 
    Tiffin P, Olson MS, Moyle LC 2001. Asymmetrical crossing barriers in angiosperms. Proc. Biol. Sci. 268:861–67
    [Google Scholar]
  134. 134. 
    Tovar-Mendez A, Kumar A, Kondo K, Ashford A, Baek YS et al. 2014. Restoring pistil-side self-incompatibility factors recapitulates an interspecific reproductive barrier between tomato species. Plant J. 77:727–36
    [Google Scholar]
  135. 135. 
    Tovar-Mendez A, Lu L, McClure B 2017. HT proteins contribute to S-RNase-independent pollen rejection in Solanum. Plant J. 89:718–29Demonstrates that multiple overlapping barriers are involved in UI in tomato clade species.
    [Google Scholar]
  136. 136. 
    Udagawa H, Ishimaru Y, Li F, Sato Y, Kitashiba H, Nishio T 2010. Genetic analysis of interspecific incompatibility in Brassicarapa. Theor. Appl. Genet. 121:689–96
    [Google Scholar]
  137. 137. 
    Uebler S, Dresselhaus T, Marton ML 2013. Species-specific interaction of EA1 with the maize pollen tube apex. Plant Signal. Behav. 8:e25682
    [Google Scholar]
  138. 138. 
    Valdivia ER, Stephenson AG, Durachko DM, Cosgrove D 2009. Class B β-expansins are needed for pollen separation and stigma penetration. Sex. Plant Reprod. 22:141–52
    [Google Scholar]
  139. 139. 
    Wallace AF. 1912. On the infertility of crosses between distinct species and the usual sterility of their hybrid offspring. Darwinism: An Exposition of the Theory of Natural Selection with Some of Its Applications AF Wallace 173–79 London: Macmillan
    [Google Scholar]
  140. 140. 
    Wang L, Clarke LA, Eason RJ, Parker CC, Qi B et al. 2017. PCP-B class pollen coat proteins are key regulators of the hydration checkpoint in Arabidopsis thaliana pollen-stigma interactions. New Phytol. 213:764–77
    [Google Scholar]
  141. 141. 
    Widmer A, Lexer C, Cozzolino S 2009. Evolution of reproductive isolation in plants. Heredity 102:31–38
    [Google Scholar]
  142. 142. 
    Wilkins KA, Poulter NS, Franklin-Tong VE 2014. Taking one for the team: self-recognition and cell suicide in pollen. J. Exp. Bot. 65:1331–42
    [Google Scholar]
  143. 143. 
    Williams EG, Kaul V, Rouse JL, Palser BF 1986. Overgrowth of pollen tubes in embryo sacs of Rhododendron following interspecific pollinations. Aust. J. Bot. 34:413–23
    [Google Scholar]
  144. 144. 
    Woriedh M, Wolf S, Marton ML, Hinze A, Gahrtz M et al. 2013. External application of gametophyte-specific ZmPMEI1 induces pollen tube burst in maize. Plant. Reprod. 26:255–66
    [Google Scholar]
  145. 145. 
    Wu H, Wang H, Cheung AY 1995. A pollen tube growth stimulatory glycoprotein is deglycosylated by pollen tubes and displays a glycosylation gradient in the flower. Cell 82:395–403
    [Google Scholar]
  146. 146. 
    Zhang CC, Wang LY, Wei K, Wu LY, Li HL et al. 2016. Transcriptome analysis reveals self-incompatibility in the tea plant (Camellia sinensis) might be under gametophytic control. BMC Genom. 17:359
    [Google Scholar]
  147. 147. 
    Zhang Z, Zhang B, Chen Z, Zhang D, Zhang H et al. 2018. A PECTIN METHYLESTERASE gene at the maize Ga1 locus confers male function in unilateral cross-incompatibility. Nat. Commun. 9:3678Characterizes a pollen-expressed PME that is critical for interpopulation barriers in maize.
    [Google Scholar]
  148. 148. 
    Zhong S, Liu M, Wang Z, Huang Q, Hou S et al. 2019. Cysteine-rich peptides promote interspecific genetic isolation in Arabidopsis. Science364:eaau9564Demonstrates that LURE peptides accelerate the emergence of conspecific pollen tubes from TT.
    [Google Scholar]
  149. 149. 
    Zhou LZ, Dresselhaus T. 2019. Friend or foe: signaling mechanisms during double fertilization in flowering seed plants. Curr. Top. Dev. Biol. 131:45396
    [Google Scholar]
  150. 150. 
    Zinkl GM, Zwiebel BI, Grier DG, Preuss D 1999. Pollen-stigma adhesion in Arabidopsis: a species-specific interaction mediated by lipophilic molecules in the pollen exine. Development 126:5431–40
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-080620-102159
Loading
/content/journals/10.1146/annurev-arplant-080620-102159
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error